OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 19 — Oct. 1, 2012
  • pp: 4068–4070

Cascaded Raman microlaser in air and buffer

Maria V. Chistiakova and Andrea M. Armani  »View Author Affiliations

Optics Letters, Vol. 37, Issue 19, pp. 4068-4070 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical microcavities provide an intriguing platform for the development of low threshold microlasers based on nonlinear effects. Long photon lifetimes within the cavity translate to high circulating optical intensities, thereby reducing the lasing threshold. It is therefore possible to create lasers that can operate in complex environments. In the present work, we use a silica microsphere to demonstrate a cascaded Raman microlaser that operates in air and buffer with the first emission peak around 800 nm in both environments. As expected, the threshold in air is significantly lower than in buffer.

© 2012 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.4780) Lasers and laser optics : Optical resonators
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 16, 2012
Revised Manuscript: August 22, 2012
Manuscript Accepted: August 27, 2012
Published: September 24, 2012

Maria V. Chistiakova and Andrea M. Armani, "Cascaded Raman microlaser in air and buffer," Opt. Lett. 37, 4068-4070 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12 (2006). [CrossRef]
  2. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011). [CrossRef]
  3. W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B: Quant. Semiclass Opt. 2, 204 (2000). [CrossRef]
  4. H. S. Hsu, C. Cai, and A. M. Armani, Opt. Express 17, 23265 (2009). [CrossRef]
  5. B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003). [CrossRef]
  6. A. Mazzei, H. Krauter, O. Benson, and S. Gotzinger, Appl. Phys. Lett. 89, 101105 (2006). [CrossRef]
  7. H. B. Lin and A. J. Campillo, Opt. Commun. 133, 287 (1997). [CrossRef]
  8. L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011). [CrossRef]
  9. F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010). [CrossRef]
  10. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005). [CrossRef]
  11. M. Oxborrow, Laser Resonators and Beam Control IX 6452, J4520 (2007). [CrossRef]
  12. M. M. Koerner, L. A. Palacio, J. W. Wright, K. S. Schweitzer, B. D. Ray, and H. I. Petrache, Biophys. J. 101, 362 (2011). [CrossRef]
  13. A. Radi, J. Sanchez, E. Baldrich, and C. O’Sullivan, J. Am. Chem. Soc. 128, 117 (2006). [CrossRef]
  14. L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011). [CrossRef]
  15. H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010). [CrossRef]
  16. A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited