Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Detection of sub-10 nm emission profile features in organic light-emitting diodes using destructive interference

Not Accessible

Your library or personal account may give you access

Abstract

The position of light-emitting molecules can be identified using interferometric approaches. Standard schemes utilize constructive interference to obtain a sectioned area of interest with high detection efficiency. The examination of organic light-emitting diodes (OLED) removes the common constraint of low light levels and enables a more generalized analysis. The OLED emitters are located in the front of a metal mirror, giving rise to an approximate two-wave fringe pattern in the far field. It is demonstrated theoretically and experimentally that positions around the field nodes enable the extraction of emitter distribution details within an electroluminescent layer of only 10 nm thickness.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Top-emitting organic light-emitting diodes

Simone Hofmann, Michael Thomschke, Björn Lüssem, and Karl Leo
Opt. Express 19(S6) A1250-A1264 (2011)

High contrast blue organic light-emitting diodes using inorganic multilayers of Al and ZnSe

You-Hyun Kim, Sang Youn Lee, Wook Song, Mei Meng, Richard Wood, Peter Mascher, Dae Hyun Ryu, and Woo Young Kim
Opt. Lett. 37(24) 5235-5237 (2012)

Tandem organic light-emitting diodes with KBH4 doped 9,10-bis(3-(pyridin-3-yl)phenyl) anthracene connected to the charge generation layer

Lian Duan, Taiju Tsuboi, Yong Qiu, Yanrui Li, and Guohui Zhang
Opt. Express 20(13) 14564-14572 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved