OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 19 — Oct. 1, 2012
  • pp: 4158–4160

Spatially modulated light source obliquely incident on a semi-infinite scattering medium

André Liemert and Alwin Kienle  »View Author Affiliations

Optics Letters, Vol. 37, Issue 19, pp. 4158-4160 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The three-dimensional radiative transfer equation is solved in the spatial frequency domain for modeling the light propagation due to a spatially modulated light source obliquely incident on a semi-infinite uniform medium. The dependence of the derived solution on the spatial frequencies as well as on position and direction is found analytically. The main computational procedure arises from the determination of several constants obtained by a system of linear equations. The obtained equations are verified and illustrated by comparisons with Monte Carlo simulations and the diffusion approximation, respectively.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 12, 2012
Revised Manuscript: August 24, 2012
Manuscript Accepted: August 26, 2012
Published: September 28, 2012

André Liemert and Alwin Kienle, "Spatially modulated light source obliquely incident on a semi-infinite scattering medium," Opt. Lett. 37, 4158-4160 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Cuccia, F. P. Bevilacqua, A. J. Durkin, and B. J. Tromberg, Opt. Lett. 30, 1354 (2005). [CrossRef]
  2. A. Bassi, C. D’Andrea, G. Valentini, R. Cubeddu, and S. Arridge, Opt. Lett. 33, 2836 (2008). [CrossRef]
  3. V. Lukic, V. A. Markel, and J. C. Schotland, Opt. Lett. 34, 983 (2009). [CrossRef]
  4. C. D’Andrea, N. Ducros, A. Bassi, S. Arridge, and G. Valentini, Biomed. Opt. Express 1, 471 (2010). [CrossRef]
  5. A. Bassi, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, J. Opt. Soc. Am. A 25, 2833 (2008). [CrossRef]
  6. D. J. Cuccia, F. P. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, J. Biomed. Opt. 14, 024012 (2009). [CrossRef]
  7. A. R. Gardner and V. Venugopalan, Opt. Lett. 36, 2269 (2011). [CrossRef]
  8. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978).
  9. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue (SPIE Press, Bellingham, 2010).
  10. J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, J. Appl. Phys. 105, 102028 (2009). [CrossRef]
  11. K. M. Case and P. F. Zweifel, Linear Transport Theory(Addison-Wesley, New York, 1967).
  12. A. Liemert and A. Kienle, J. Opt. Soc. Am. A 29, 1475 (2012). [CrossRef]
  13. A. Kienle, “Lichtausbreitung in biologischem Gewebe,” dissertation (University of Ulm, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited