OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 2 — Jan. 15, 2012
  • pp: 166–168

Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution

Wei Li, Ning Hua Zhu, and Li Xian Wang  »View Author Affiliations

Optics Letters, Vol. 37, Issue 2, pp. 166-168 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a reconfigurable microwave frequency measurement technique with adjustable measurement range and resolution. The key novelty of the technique is the employment of stimulated Brillouin scattering, which results in a tunable amplitude comparison function, leading to an adjustable measurement range and resolution. The proposed technique is switchable between a wideband tunable narrow measurement range (2GHz) with high resolution (±0.05GHz) and a fixed wide measurement range (12 GHz) with moderate resolution (±0.25GHz).

© 2012 Optical Society of America

OCIS Codes
(290.5900) Scattering : Scattering, stimulated Brillouin
(320.7100) Ultrafast optics : Ultrafast measurements
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 27, 2011
Revised Manuscript: November 27, 2011
Manuscript Accepted: November 28, 2011
Published: January 10, 2012

Wei Li, Ning Hua Zhu, and Li Xian Wang, "Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution," Opt. Lett. 37, 166-168 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, Opt. Express 17, 22983 (2009). [CrossRef]
  2. L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006). [CrossRef]
  3. J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, IEEE Photon. Technol. Lett. 21, 1069 (2009). [CrossRef]
  4. X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008). [CrossRef]
  5. J. Li, S. Fu, K. Xu, J. Q. Zhou, P. Shum, J. Wu, and J. Lin, Opt. Lett. 34, 743 (2009). [CrossRef]
  6. T. Niemi, G. Genty, and H. Ludvigsen, in Proceedings of the 27th Eururopean Conference on Optical Communication (IEEE, 2001), Vol. 4, p. 496.
  7. A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006). [CrossRef]
  8. M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. W. Lauterbach, and T. Schneider, IEEE Trans. Microw. Theory Tech. 54, 1576 (2006). [CrossRef]
  9. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, J. Lightwave Technol. 25, 201 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited