OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 2 — Jan. 15, 2012
  • pp: 211–213

Effective control of photoluminescence from ZnO nanowires by a-SiNx:H decoration

Rui Huang, Shuigang Xu, Xiang Wang, Wenhao Guo, Chao Song, Jie Song, Kin Ming Ho, Shengwang Du, and Ning Wang  »View Author Affiliations

Optics Letters, Vol. 37, Issue 2, pp. 211-213 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The a-SiNx:H with a large bandgap of 3.8 eV was utilized to decorate ZnO nanowires. The UV emission from the a-SiNx:H-decorated ZnO nanowires are greatly enhanced compared with the undecorated ZnO nanowire. The deep-level defect emission has been completely suppressed even though the sample was annealed at temperatures up to 400 °C. The incorporation of H and N is suggested to passivate the defect states at the nanowire surface and thus result in the flat-band effect near ZnO surface as well as reduction of the nonradiative recombination probability.

© 2012 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4760) Materials : Optical properties
(250.5230) Optoelectronics : Photoluminescence
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:

Original Manuscript: October 17, 2011
Revised Manuscript: November 11, 2011
Manuscript Accepted: November 11, 2011
Published: January 12, 2012

Rui Huang, Shuigang Xu, Xiang Wang, Wenhao Guo, Chao Song, Jie Song, Kin Ming Ho, Shengwang Du, and Ning Wang, "Effective control of photoluminescence from ZnO nanowires by a-SiNx:H decoration," Opt. Lett. 37, 211-213 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001). [CrossRef]
  2. Q. Yang, W. Wang, S. Xu, and Z. L. Wang, Nano Lett. 11, 4012 (2011). [CrossRef]
  3. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, Nat. Nanotechnol. 6, 506 (2011). [CrossRef]
  4. B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002). [CrossRef]
  5. H.-Y. Li, S. Ruhle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, Nano Lett. 9, 3515 (2009). [CrossRef]
  6. M. D. McCluskey and S. J. Jokela, J. Appl. Phys. 106, 071101 (2009). [CrossRef]
  7. J.-P. Richters, T. Voss, L. Wischmeier, I. Rűckmann, and J. Gutowski, Appl. Phys. Lett. 92, 011103 (2008). [CrossRef]
  8. C. Y. Chen, C. A. Lin, M. J. Cen, G. R. Lin, and J. H. He, Nanotechnology 20, 185605 (2009). [CrossRef]
  9. K. W. Liu, R. Chen, G. Z. Xing, T. Wu, and H. D. Sun, Appl. Phys. Lett. 96, 023111 (2010). [CrossRef]
  10. C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, Appl. Phys. Lett. 99, 063115 (2011). [CrossRef]
  11. L. Shi, Y. Xu, S. Hark, Y. Liu, S. Wang, L. Peng, K. Wong, and Q. Li, Nano Lett. 7, 3559 (2007). [CrossRef]
  12. C.-C. Lin, H.-P. Chen, H.-C. Liao, and S.-Y. Chen, Appl. Phys. Lett. 86, 183103 (2005). [CrossRef]
  13. X. Meng, H. Peng, Y. Gai, and J. Li, J. Phys. Chem. C 114, 1467 (2010). [CrossRef]
  14. A. B. Djurišić, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, Appl. Phys. Lett. 84, 2635 (2004). [CrossRef]
  15. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, Adv. Funct. Mater. 12, 323 (2002). [CrossRef]
  16. T.-J. Kuo, C.-N. Lin, C.-L. Kuo, and M. H. Huang, Chem. Mater. 19, 5143 (2007). [CrossRef]
  17. J. Tauc, Amorphous and Liquid Semiconductors (Springer, 1974).
  18. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996). [CrossRef]
  19. J.-P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias, Nanotechnology 19, 305202 (2008). [CrossRef]
  20. F. Giorgis, C. F. Pirri, and E. Tresso, Thin Solid Films 307, 298 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited