OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 20 — Oct. 15, 2012
  • pp: 4281–4283

Flat-focal-field integrated spectrometer using a field-flattening lens

B. Imran Akca, Gabriel Sengo, Markus Pollnau, Alfred Driessen, Kerstin Wörhoff, and René M. de Ridder  »View Author Affiliations

Optics Letters, Vol. 37, Issue 20, pp. 4281-4283 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new flat-focal-field arrayed-waveguide grating (AWG) design that utilizes an integrated field-flattening lens placed in the second star coupler. The effective index difference between slab and lens region is obtained by introducing a thin silicon nitride (SiN) layer to a silicon oxynitride environment. Depending upon the SiN layer position, two different lens designs are implemented. As a proof of concept two 81-channel AWGs, one with and one without the lens, are designed, fabricated, and characterized for each lens design. The measurements show that the adjacent crosstalk at the peripheral channels is improved by 2 dB, an improvement which is predicted to become more pronounced for AWGs with higher number of output waveguides (e.g., 16dB for 200 output waveguides). Only 0.4 dB of extra excess loss is introduced by the lens.

© 2012 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.3120) Optical devices : Integrated optics devices
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Optical Devices

Original Manuscript: July 20, 2012
Revised Manuscript: September 2, 2012
Manuscript Accepted: September 4, 2012
Published: October 11, 2012

B. Imran Akca, Gabriel Sengo, Markus Pollnau, Alfred Driessen, Kerstin Wörhoff, and René M. de Ridder, "Flat-focal-field integrated spectrometer using a field-flattening lens," Opt. Lett. 37, 4281-4283 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Rowland, Philos. Mag. 16, 197 (1883). [CrossRef]
  2. N. Cvetojevic, J. S. Lawrence, S. C. Ellis, J. Bland-Hawthorn, R. Haynes, and A. Horton, Opt. Express 17, 18643 (2009). [CrossRef]
  3. B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, IEEE Photon. Technol. Lett. 24, 848 (2012). [CrossRef]
  4. C. H. F. Velzel, J. Opt. Soc. Am. 66, 346 (1976). [CrossRef]
  5. M. K. Smit and C. van Dam, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996). [CrossRef]
  6. S. Lu, C. Yang, Y. Yan, G. Jin, Z. Zhou, W. H. Wong, and E. Y. B. Pun, Opt. Express 13, 9982 (2005). [CrossRef]
  7. R. Kingslake, Lens Design Fundamentals (Academic, 1978).
  8. N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, Opt. Lett. 36, 4629 (2011). [CrossRef]
  9. B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited