Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Self-assembled nanoparticle antiglare coatings

Not Accessible

Your library or personal account may give you access

Abstract

Here we report a simple and scalable bottom-up technology for assembling close-packed nanoparticle monolayers on both sides of a glass substrate as high-quality antiglare coatings. Optical measurements show that monolayer coatings consisting of 110 nm silica nanoparticles can significantly reduce optical reflectance and enhance specular transmittance of the glass substrate for a broad range of visible wavelengths. Both experiments and numerical simulations reveal that the antiglare properties of the self-assembled colloidal monolayers are significantly affected by the size of the colloidal particles.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Self-assembled nanoparticle antireflection coatings on geometrically complex optical surfaces

Khalid Askar, Zhuxiao Gu, Calen J. Leverant, Jiamin Wang, Christopher Kim, Bin Jiang, and Peng Jiang
Opt. Lett. 43(21) 5238-5241 (2018)

A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles

José Dintinger, Stefan Mühlig, Carsten Rockstuhl, and Toralf Scharf
Opt. Mater. Express 2(3) 269-278 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.