OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 21 — Nov. 1, 2012
  • pp: 4449–4451

Polymeric slot waveguide at visible wavelength

Marianne Hiltunen, Jussi Hiltunen, Petri Stenberg, Jarno Petäjä, Esa Heinonen, Pasi Vahimaa, and Pentti Karioja  »View Author Affiliations

Optics Letters, Vol. 37, Issue 21, pp. 4449-4451 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polymeric slot waveguide structure, which pushes the mode field toward the surrounding media, was designed and characterized. The slot waveguide was fabricated by using nanoimprint lithography, and the operation of the slot was demonstrated at 633 nm wavelength with an integrated Young interferometer. The experimental result shows that the nanolithography method provides possibilities to fabricate disposable slot waveguide sensors.

© 2012 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(230.7370) Optical devices : Waveguides
(220.4241) Optical design and fabrication : Nanostructure fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optical Devices

Original Manuscript: August 23, 2012
Revised Manuscript: September 14, 2012
Manuscript Accepted: September 17, 2012
Published: October 23, 2012

Marianne Hiltunen, Jussi Hiltunen, Petri Stenberg, Jarno Petäjä, Esa Heinonen, Pasi Vahimaa, and Pentti Karioja, "Polymeric slot waveguide at visible wavelength," Opt. Lett. 37, 4449-4451 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004). [CrossRef]
  2. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klung, M. Lipson, and D. Erickson, Nature 457, 71 (2009). [CrossRef]
  3. V. R. Almeida, C. B. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004). [CrossRef]
  4. C. A. Barrios, Sensors 9, 4751 (2009). [CrossRef]
  5. A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, Opt. Express 19, 26275 (2011). [CrossRef]
  6. G. Testa and R. Bernini, J. Lightwave Technol. 29, 2979 (2011). [CrossRef]
  7. P. Bettotti, A. Pitantti, E. Rigo, F. De Leonardis, V. M. N. Passaro, and L. Pavesi, Sensors 11, 7327 (2011). [CrossRef]
  8. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, Appl. Opt. 36, 6035 (1997). [CrossRef]
  9. J. Hiltunen, M. Hiltunen, J. Puustinen, J. Lappalainen, and P. Karioja, Opt. Express 17, 22813 (2009). [CrossRef]
  10. FIMMWAVE software, Photon Design Ltd., Oxford, UK.
  11. Ormocore datasheet, Microresist Technology.
  12. T. D. Visser, B. Demeulenaere, J. Haes, D. Lenstra, R. Baets, and H. Blok, J. Lightwave Technol. 14, 885 (1996). [CrossRef]
  13. J. S. Kanger, V. Subramaniam, P. H. J. Nederkoorn, and A. Ymeti, in Advanced Photonic Structures for Biological and Chemical Detection, X. Fan, ed. (Springer, 2009), pp. 265–295.
  14. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited