OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 21 — Nov. 1, 2012
  • pp: 4461–4463

Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation

Vincenzo Spagnolo, Pietro Patimisco, Simone Borri, Gaetano Scamarcio, Bruce E. Bernacki, and Jason Kriesel  »View Author Affiliations


Optics Letters, Vol. 37, Issue 21, pp. 4461-4463 (2012)
http://dx.doi.org/10.1364/OL.37.004461


View Full Text Article

Enhanced HTML    Acrobat PDF (262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 μm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-IR fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor. The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and microresonator tubes. SF 6 was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7 × 10 10 W · cm 1 / Hz 1 / 2 .

© 2012 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: August 28, 2012
Revised Manuscript: September 19, 2012
Manuscript Accepted: September 21, 2012
Published: October 23, 2012

Citation
Vincenzo Spagnolo, Pietro Patimisco, Simone Borri, Gaetano Scamarcio, Bruce E. Bernacki, and Jason Kriesel, "Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation," Opt. Lett. 37, 4461-4463 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-21-4461


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010). [CrossRef]
  2. R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, Opt. Express 15, 7357 (2007). [CrossRef]
  3. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, Proc. Natl. Acad. Sci. USA 106, 12587(2009). [CrossRef]
  4. A. A. Kosterev, P. R. Buerki, L. Dong, M. Reed, T. Day, and F. K. Tittel, Appl. Phys. B 100, 173 (2010). [CrossRef]
  5. A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005). [CrossRef]
  6. C. Bauer, U. Willer, and W. Schade, Opt. Eng. 49, 111126 (2010). [CrossRef]
  7. L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, Opt. Express 19, 24037 (2011). [CrossRef]
  8. L. Dong, R. Lewicki, K. Liu, P. R. Buerki, M. J. Weida, and F. K. Tittel, Appl. Phys. B 107, 275 (2012). [CrossRef]
  9. S. Schilt, A. A. Kosterev, and F. K. Tittel, Appl. Phys. B 95, 813 (2009). [CrossRef]
  10. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, Appl. Phys. B 100, 627 (2010). [CrossRef]
  11. Inventory of U. S. Greenhouse Gas Emissions and Sinks: 1990/2008, U. S. Environmental Protection Agency, Washington, D.C., USA, April 2010.
  12. E. Huang, D. R. Rowling, T. Whelan, and J. L Spiesberger, J. Acoust. Soc. Am. 114, 1926 (2003). [CrossRef]
  13. V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, Appl. Phys. B 100, 125 (2010). [CrossRef]
  14. J. M. Kriesel, N. Gat, B. E. Bernacki, R. L. Erikson, B. D. Cannon, T. L. Myers, C. M. Bledt, and J. A. Harrington, Proc. SPIE 8018, 80180V1 (2011). [CrossRef]
  15. Under these conditions the modulation width results 0.07  cm−1 and the physical parameters of the QTF are Q=22200; R=54.7  kΩ; f0=32762.6  Hz.
  16. P. Werle, Appl. Phys. B 102, 313 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited