OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 21 — Nov. 1, 2012
  • pp: 4467–4469

Optofluidic magnetometer developed in a microstructured optical fiber

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis  »View Author Affiliations

Optics Letters, Vol. 37, Issue 21, pp. 4467-4469 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A directional, in-fiber optofluidic magnetometer based on a microstructured optical fiber (MOF) Bragg-grating infiltrated with a ferrofluidic defect is presented. Upon application of a magnetic field, the ferrofluidic defect moves along the length of the MOF Bragg grating, modifying its reflection spectrum. The magnetometer is capable of measuring magnetic fields from 317 to 2500 G. The operational principle of such in-fiber magnetic field probe allows the elaboration of directional measurements of the magnetic field flux.

© 2012 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.3810) Optical devices : Magneto-optic systems
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 29, 2012
Manuscript Accepted: September 13, 2012
Published: October 24, 2012

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, "Optofluidic magnetometer developed in a microstructured optical fiber," Opt. Lett. 37, 4467-4469 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006). [CrossRef]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007). [CrossRef]
  3. M. Vieweg, S. Pricking, T. Gissibl, Y. Kartashov, L. Torner, and H. Giessen, Opt. Lett. 37, 1058 (2012). [CrossRef]
  4. C. Markos, K. Vlachos, and G. Kakarantzas, Opt. Mater. Express 2, 929 (2012). [CrossRef]
  5. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, Opt. Express 15, 3962 (2007). [CrossRef]
  6. A. A. Kayani, K. Khoshmanesh, S. A. Ward, A. Mitchell, and K. Kalantar-zadeh, Biomicrofluidics 6, 031501 (2012). [CrossRef]
  7. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, IEEE Photon. Technol. Lett. 12, 495 (2000). [CrossRef]
  8. A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, Opt. Express 18, 24654 (2010). [CrossRef]
  9. A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, Opt. Lett. 36, 2548 (2011). [CrossRef]
  10. G. N. Smith, T. Allsop, K. Kalli, C. Koutsides, R. Neal, K. Sugden, P. Culverhouse, and I. Bennion, Opt. Express 19, 363 (2011). [CrossRef]
  11. J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, Electron. Lett. 33, 235 (1997). [CrossRef]
  12. L. Palmieri and A. Galtarossa, J. Lightwave Technol. 29, 3178 (2011). [CrossRef]
  13. H. Ji, S. Pu, X. Wang, and G. Yu, Appl. Opt. 51, 1010 (2012). [CrossRef]
  14. H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, Appl. Phys. Lett. 99, 161101 (2011). [CrossRef]
  15. A. Candiani, A. Argyros, R. Lwin, S. G. Leon-Saval, G. Zito, S. Selleri, and S. Pissadakis, Microstructured and Specialty Optical Fibres (SPIE, 2012), 84260E–84266.
  16. C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, IEEE/ASME J. Microelectromech Syst. 14, 96 (2005). [CrossRef]
  17. M. S. Amin, S. Elborai, S.-H. Lee, X. He, and M. Zahn, J. Appl. Phys. 97, 10R308 (2005). [CrossRef]
  18. S. Odenbach, Magnetoviscous Effects in Ferrofluids (Springer, 2002).
  19. C. Rinaldi, A. Chaves, S. Elborai, X. He, and M. Zahn, Interface Sci. 10, 141 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2096 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited