OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 21 — Nov. 1, 2012
  • pp: 4549–4551

Raman lasing in a chalcogenide microwire-based Fabry–Perot cavity

Raja Ahmad and Martin Rochette  »View Author Affiliations

Optics Letters, Vol. 37, Issue 21, pp. 4549-4551 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (366 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate an all-chalcogenide microwire Raman laser, the first to our knowledge. The gain medium is provided by the Raman effect in a chalcogenide microwire and two Fabry–Perot resonant media are tested for lasing: (1) a cavity made out of a Fresnel reflection at one end of the microwire and a silver coated, broadband mirror at the other end, and (2) a cavity made out of Fresnel reflections at both ends of the microwire. The microwires are pumped in the C-band, and the resulting Raman lasers operate in the L-band. Such an all-chalcogenide microwire laser has the potential to operate over the entire transmission window of chalcogenide glasses, i.e., in the wavelength range of 1.5–10 μm.

© 2012 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.3550) Lasers and laser optics : Lasers, Raman
(190.5650) Nonlinear optics : Raman effect
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Nonlinear Optics

Original Manuscript: August 28, 2012
Revised Manuscript: September 26, 2012
Manuscript Accepted: October 4, 2012
Published: October 30, 2012

Raja Ahmad and Martin Rochette, "Raman lasing in a chalcogenide microwire-based Fabry–Perot cavity," Opt. Lett. 37, 4549-4551 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Stolen, Fiber Integr. Opt. 3, 21 (1980). [CrossRef]
  2. E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000). [CrossRef]
  3. S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gapontsev, IEEE Photon. Technol. Lett. 16, 1014 (2004). [CrossRef]
  4. J. C. Travers, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 87, 031106 (2005). [CrossRef]
  5. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, J. Opt. Soc. Am. B 21, 1146 (2004). [CrossRef]
  6. P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. Wigley, and G. Stegeman, Opt. Lett. 18, 1996 (1993). [CrossRef]
  7. V. S. Afshar, W. Q. Zhang, H. E. Heidepriem, and T. M. Monro, Opt. Lett. 34, 3577 (2009). [CrossRef]
  8. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, Opt. Express 15, 10324 (2007). [CrossRef]
  9. C. Baker and M. Rochette, Opt. Express 18, 12391 (2010). [CrossRef]
  10. O. Boyraz and B. Jalali, Opt. Express 12, 5269 (2004). [CrossRef]
  11. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005). [CrossRef]
  12. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001). [CrossRef]
  13. R. Ahmad and M. Rochette, Appl. Phys. Lett. 101, 101110 (2012). [CrossRef]
  14. S. D. Jackson and G. Anzueto-Sánchez, Appl. Phys. Lett. 88, 221106 (2006). [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  16. See, for example, http://www.evaporatedcoatings.com/mirror-coatings .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited