OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 21 — Nov. 1, 2012
  • pp: 4558–4560

Experimental measurement of the number of modes for a multimode optical fiber

Changhyeong Yoon, Youngwoon Choi, Moonseok Kim, Jungho Moon, Donggyu Kim, and Wonshik Choi  »View Author Affiliations

Optics Letters, Vol. 37, Issue 21, pp. 4558-4560 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (290 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For a multimode optical fiber, the number of modes (Nm) can be calculated by analytic theory when the fiber is straight, twist-free, and strain-free. In practice, however, the fiber is subject to distortions that modify its mode characteristics. In this Letter, we present an experimental method to interrogate the mode properties of a multimode optical fiber. We experimentally measured the transmission matrix of a multimode optical fiber and performed singular value decomposition. We proved, both theoretically and experimentally, that the rank of the transmission matrix is equal to Nm. We expect that the suggested method will contribute to the fields of the biomedical optics and optical communications where optical fiber is widely used.

© 2012 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 16, 2012
Revised Manuscript: September 28, 2012
Manuscript Accepted: September 28, 2012
Published: October 31, 2012

Changhyeong Yoon, Youngwoon Choi, Moonseok Kim, Jungho Moon, Donggyu Kim, and Wonshik Choi, "Experimental measurement of the number of modes for a multimode optical fiber," Opt. Lett. 37, 4558-4560 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Saffman and D. Z. Anderson, Opt. Lett. 16, 300 (1991). [CrossRef]
  2. H. R. Stuart, Science 289, 281 (2000). [CrossRef]
  3. A. M. Tai and A. A. Friesem, Opt. Lett. 8, 57 (1983). [CrossRef]
  4. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 2007).
  5. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010). [CrossRef]
  6. I. M. Vellekoop and A. P. Mosk, Phys. Rev. Lett. 101, 120601 (2008). [CrossRef]
  7. Z. Shi and A. Z. Genack, Phys. Rev. Lett. 108, 043901 (2012). [CrossRef]
  8. O. N. Dorokhov, Solid State Commun. 51, 381 (1984). [CrossRef]
  9. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, Nat. Photonics 6, 581 (2012). [CrossRef]
  10. S. Bianchi and R. Di Leonardo, Lab Chip 12, 635 (2012). [CrossRef]
  11. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Opt. Express 20, 10583 (2012). [CrossRef]
  12. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited