OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 22 — Nov. 15, 2012
  • pp: 4636–4638

Microwave spectral analysis based on photonic compressive sampling with random demodulation

Hao Chi, Yuan Mei, Ying Chen, Donghui Wang, Shilie Zheng, Xiaofeng Jin, and Xianmin Zhang  »View Author Affiliations

Optics Letters, Vol. 37, Issue 22, pp. 4636-4638 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this Letter, we present a photonic compressive sampling scheme based on optical sampling and random demodulation for microwave spectral analysis. A novel (to our knowledge) approach to realizing the multiplication of a pseudorandom binary sequence and the input microwave signal of interest in the optical domain is proposed, which largely simplifies the implementation of the compressive sampling. A spectrally sparse signal can be successfully captured by an electrical digitizer with a sampling rate much lower than the Nyquist rate with the help of random demodulation and the sparse reconstruction algorithm. Identification of the signals with multiple frequency components is successfully demonstrated.

© 2012 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(250.4745) Optoelectronics : Optical processing devices

ToC Category:

Original Manuscript: July 23, 2012
Revised Manuscript: September 18, 2012
Manuscript Accepted: September 19, 2012
Published: November 7, 2012

Hao Chi, Yuan Mei, Ying Chen, Donghui Wang, Shilie Zheng, Xiaofeng Jin, and Xianmin Zhang, "Microwave spectral analysis based on photonic compressive sampling with random demodulation," Opt. Lett. 37, 4636-4638 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007). [CrossRef]
  2. R. A. Minasian, IEEE Trans. Microwave Theor. Tech. 54, 832 (2006). [CrossRef]
  3. L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006). [CrossRef]
  4. H. Chi, X. H. Zou, and J. P. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008). [CrossRef]
  5. S. T. Winnall and A. C. Lindsay, IEEE Trans. Microwave Theor. Tech. 47, 1385 (1999). [CrossRef]
  6. W. S. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, IEEE Trans. Microwave Theor. Tech. 49, 1996 (2001). [CrossRef]
  7. R. E. Saperstein, D. Panasenko, and Y. Fainman, Opt. Lett. 29, 501 (2004). [CrossRef]
  8. B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microwave Theor. Tech. 58, 3103 (2010). [CrossRef]
  9. Y. Wang, H. Chi, X. Zhang, S. Zheng, and X. Jin, Opt. Lett. 36, 3897 (2011). [CrossRef]
  10. L. V. T. Nguyen, IEEE Photon. Technol. Lett. 21, 642 (2009). [CrossRef]
  11. J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, IEEE Trans. Inf. Theory 56, 520 (2010). [CrossRef]
  12. H. Nan, Y. Gu, and H. Zhang, IEEE Photon. Technol. Lett. 23, 67 (2011). [CrossRef]
  13. L. Yan, Y. Dai, K. Xu, J. Wu, Y. Li, Y. Ji, and J. Lin, IEEE Photon. J. 4, 664 (2012). [CrossRef]
  14. J. M. Nicholes and F. Bucholz, Opt. Express 19, 7339 (2011). [CrossRef]
  15. M. Mishali and Y. C. Eldar, IEEE J. Sel. Top. Signal Proc. 4, 375 (2010). [CrossRef]
  16. S. Boyd and L. Vandenberghe, Convex Optimization(Cambridge Univ., 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited