OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 22 — Nov. 15, 2012
  • pp: 4654–4656

Microwave collimation based on zero index metamaterials with Dirac point

Kai Fang, Yewen Zhang, Fangfei Li, Haitao Jiang, Yunhui Li, Wusong Wang, and Hong Chen  »View Author Affiliations

Optics Letters, Vol. 37, Issue 22, pp. 4654-4656 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (365 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The microwave zero index metamaterials (ZIMs) can be realized by loading lumped elements into two-dimensional transmission lines (TLs) with Dirac cones whose linear dispersion can appear around the center of the Brillouin zone. Based on Snell’s law, the refracted angle of waves nearly equals zero when a point source radiates from the ZIM TL into the double positive (DPS) one in the ZIM-DPS TL structure. Experimental results demonstrate that at Dirac point the curved wavefronts in the ZIM region are transformed into planar ones in DPS region.

© 2012 Optical Society of America

OCIS Codes
(120.1680) Instrumentation, measurement, and metrology : Collimation
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: August 27, 2012
Revised Manuscript: October 2, 2012
Manuscript Accepted: October 3, 2012
Published: November 7, 2012

Kai Fang, Yewen Zhang, Fangfei Li, Haitao Jiang, Yunhui Li, Wusong Wang, and Hong Chen, "Microwave collimation based on zero index metamaterials with Dirac point," Opt. Lett. 37, 4654-4656 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef]
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 5685 (2004).
  4. J. Hao, W. Yan, and M. Qiu, Appl. Phys. Lett. 96, 101109 (2010). [CrossRef]
  5. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, Phys. Rev. Lett. 89, 213902 (2002). [CrossRef]
  6. M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006). [CrossRef]
  7. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, Phys. Rev. Lett. 100, 033903 (2008). [CrossRef]
  8. Y. Jin, P. Zhang, and S. He, Phys. Rev. B. 81, 085117 (2010). [CrossRef]
  9. R. W. Ziolkowski, Phys. Rev. E. 70, 046608 (2004). [CrossRef]
  10. H. T. Jiang, H. Chen, and S. Y. Zhu, Opt. Lett. 32, 1980 (2007). [CrossRef]
  11. S. Feng, Phys. Rev. Lett. 108, 193904 (2012). [CrossRef]
  12. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. B. 75, 155410 (2007). [CrossRef]
  13. V. C. Nguyen, L. Chen, and K. Halterman, Phys. Rev. Lett. 105, 233908 (2010). [CrossRef]
  14. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, Nat. Mater. 10, 582 (2011). [CrossRef]
  15. K. Sakoda, Opt. Express 20, 3898 (2012). [CrossRef]
  16. K. Sakoda, Opt. Express 20, 9925 (2012). [CrossRef]
  17. L. G. Wang, Z. G. Wang, J. X. Zhang, and S. Y. Zhu, Opt. Lett. 34, 1510 (2009). [CrossRef]
  18. A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, Opt. Express 11, 696 (2003). [CrossRef]
  19. A. Grbic and G. V. Eleftheriades, IEEE Trans. Antennas Propag. 51, 2604 (2003). [CrossRef]
  20. C. Caloz and T. Itoh, Electromagnetic Metamaterials, Transmission Line Theory and Microwave Applications (Wiley, 2006).
  21. K. Fang, L. W. Zhang, F. F. Li, W. S. Wang, and Y. W. Zhang, iWAT, 5752350 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited