OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 22 — Nov. 15, 2012
  • pp: 4708–4710

Nonlinear photoacoustic signal increase from endocytosis of gold nanoparticles

Seung Yun Nam, Laura M. Ricles, Laura J. Suggs, and Stanislav Y. Emelianov  »View Author Affiliations

Optics Letters, Vol. 37, Issue 22, pp. 4708-4710 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (442 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear photoacoustic effects, rarely seen in biomedical photoacoustic imaging of tissues, can manifest themselves strongly when plasmonic nanoparticles are used as imaging contrast agents. Specifically, nonlinear behavior of photoacoustic signal with modest laser fluences can occur when nanoparticles undergo cellular endocytosis and aggregation leading to thermal coupling and subsequent localized temperature enhancement. Our study demonstrated this effect using in vitro tissue models containing cells. While the photoacoustic signal amplitude was linearly proportional to the cell/nanoparticle concentration, the photoacoustic signal increased nonlinearly as the laser fluence increased. Our results, therefore, suggest that the nonlinear effects can be exploited in molecular/cellular photoacoustic imaging.

© 2012 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(110.5125) Imaging systems : Photoacoustics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 20, 2012
Revised Manuscript: October 2, 2012
Manuscript Accepted: October 5, 2012
Published: November 12, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Seung Yun Nam, Laura M. Ricles, Laura J. Suggs, and Stanislav Y. Emelianov, "Nonlinear photoacoustic signal increase from endocytosis of gold nanoparticles," Opt. Lett. 37, 4708-4710 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Y. Emelianov, P. C. Li, and M. O’Donnell, Phys. Today 62, 34 (2009). [CrossRef]
  2. S. Kim, Y.-S. Chen, G. P. Luke, and S. Y. Emelianov, Biomed. Opt. Express 2, 2540 (2011). [CrossRef]
  3. V. Ė. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).
  4. V. B. Oshurko, Tech. Phys. Lett. 32, 691 (2006). [CrossRef]
  5. S. V. Egerev and A. A. Oraevsky, Int. J. Thermophys. 29, 2116 (2008). [CrossRef]
  6. A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, ACS Nano 6, 3434 (2012). [CrossRef]
  7. A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, Nano. Res. Lett. 1, 84 (2006). [CrossRef]
  8. T.-G. Iversen, T. Skotland, and K. Sandvig, Nano Today 6, 176 (2011). [CrossRef]
  9. L. M. Ricles, S. Y. Nam, K. Sokolov, S. Y. Emelianov, and L. J. Suggs, Int. J. Nanomed. 6, 407 (2011).
  10. S. Y. Nam, L. M. Ricles, L. J. Suggs, and S. Y. Emelianov, PLoS ONE 7, e37267 (2012). [CrossRef]
  11. A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, Nat. Nanotechnol. 3, 557 (2008). [CrossRef]
  12. S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, Nano Lett. 9, 2825 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited