OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 22 — Nov. 15, 2012
  • pp: 4792–4794

Phase conjugation based on single backward second-order nonlinear parametric process

Yujie J. Ding  »View Author Affiliations

Optics Letters, Vol. 37, Issue 22, pp. 4792-4794 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (236 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that backward difference-frequency generation can be exploited to achieve phase conjugation in a second-order nonlinear medium. The backward configuration can be utilized to achieve broadband quasi-phase-matching, compared with the forward counterpart. Our calculation shows that a nonlinear reflectivity of close to 100% is achievable from a laser emitting an output power of 1mW. Such an efficient phase conjugator is made feasible by placing the nonlinear medium inside a pump laser cavity. In addition, a Fabry–Perot resonator at the input frequency is used to significantly improve the nonlinear reflectivity.

© 2012 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.5040) Nonlinear optics : Phase conjugation

ToC Category:
Nonlinear Optics

Original Manuscript: October 1, 2012
Revised Manuscript: October 9, 2012
Manuscript Accepted: October 11, 2012
Published: November 15, 2012

Yujie J. Ding, "Phase conjugation based on single backward second-order nonlinear parametric process," Opt. Lett. 37, 4792-4794 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh, Appl. Opt. 26, 602 (1987). [CrossRef]
  2. For a review, see various chapters in R. A. Fisher, ed., Optical Phase Conjugation (Academic, 1983).
  3. M. V. Vasil’ev, V. Yu. Venediktov, and A. A. Leshchev, Quantum Electron. 31, 1 (2001). [CrossRef]
  4. Y. J. Ding, J. B. Khurgin, and S. J. Lee, Opt. Quantum Electron. 28, 1617 (1996). [CrossRef]
  5. M. Tsang and D. Psaltis, Opt. Commun. 242, 659 (2004). [CrossRef]
  6. Y. J. Ding and J. B. Khurgin, IEEE J. Quantum Electron. 32, 1574 (1996). [CrossRef]
  7. C. Canalias and V. Pasiskevicius, Nat. Photonics 1, 459 (2007). [CrossRef]
  8. A. Yariv, Quantum Electronics (Wiley, 1989), pp. 435–437 and pp. 498–506.
  9. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Circuits (Wiley, 1995), p. 77.
  10. B. Zhang, Y. J. Ding, and I. B. Zotova, Appl. Phys. B 99, 629 (2010). [CrossRef]
  11. Y. Jiang, D. Li, Y. J. Ding, and I. B. Zotova, in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThB92.
  12. S. Stivala, A. Pasquazi, L. Colace, G. Assanto, A. C. Busacca, M. Cherchi, S. Riva-Sanseverino, A. C. Cino, and A. Parisi, J. Opt. Soc. Am. B 24, 1564 (2007). [CrossRef]
  13. X. D. Mu, H. Meissner, and H. C. Lee, Opt. Lett. 35, 387 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited