OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 22 — Nov. 15, 2012
  • pp: 4802–4804

Subpixel smoothing finite-difference time-domain method for material interface between dielectric and dispersive media

Jinjie Liu, Moysey Brio, and Jerome V. Moloney  »View Author Affiliations

Optics Letters, Vol. 37, Issue 22, pp. 4802-4804 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (208 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this Letter, we have shown that the subpixel smoothing technique that eliminates the staircasing error in the finite-difference time-domain method can be extended to material interface between dielectric and dispersive media by local coordinate rotation. First, we show our method is equivalent to the subpixel smoothing method for dielectric interface, then we extend it to a more general case where dispersive/dielectric interface is present. Finally, we provide a numerical example on a scattering problem to demonstrate that we were able to significantly improve the accuracy.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

Original Manuscript: September 28, 2012
Revised Manuscript: October 16, 2012
Manuscript Accepted: October 16, 2012
Published: November 15, 2012

Virtual Issues
December 10, 2012 Spotlight on Optics

Jinjie Liu, Moysey Brio, and Jerome V. Moloney, "Subpixel smoothing finite-difference time-domain method for material interface between dielectric and dispersive media," Opt. Lett. 37, 4802-4804 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966). [CrossRef]
  2. A. Taflove and M. E. Brodwin, IEEE Trans. Microwave Theory Tech. 23, 623 (1975). [CrossRef]
  3. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed. (Artech House, 2005).
  4. N. Kaneda, B. Houshmand, and T. Itoh, IEEE Trans. Microwave Theory Tech. 45, 1645 (1997). [CrossRef]
  5. S. Dey and R. Mittra, IEEE Trans. Microwave Theory Tech. 47, 1737 (1999). [CrossRef]
  6. A. Mohammadi, H. Nadgaran, and M. Agio, Opt. Express 13, 10367 (2005). [CrossRef]
  7. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, Opt. Lett. 31, 2972 (2006). [CrossRef]
  8. A. F. Oskooi, C. Kottke, and S. G. Johnson, Opt. Lett. 34, 2778 (2009). [CrossRef]
  9. G. R. Werner and J. R. Cary, J. Comput. Phys. 226, 1085 (2007). [CrossRef]
  10. T. Hirono, Y. Yoshikuni, and T. Yamanaka, Appl. Opt. 49, 1080 (2010). [CrossRef]
  11. A. Deinega and I. Valuev, Opt. Lett. 32, 3429 (2007). [CrossRef]
  12. A. Deinega and S. John, Opt. Lett. 37, 112 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited