OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 23 — Dec. 1, 2012
  • pp: 4844–4846

Dispersion irrelevant wideband asymmetric transmission in dielectric photonic crystal gratings

Andriy E. Serebryannikov, Evrim Colak, A. Ozgur Cakmak, and Ekmel Ozbay  »View Author Affiliations

Optics Letters, Vol. 37, Issue 23, pp. 4844-4846 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wideband suppression of zero order and relevant strongly asymmetric transmission can be obtained in photonic crystal gratings that are made of linear isotropic materials and show the broken structural (axial) symmetry, even if zero diffraction order may be coupled to a Floquet–Bloch (FB) wave at the incidence and exit interfaces. The studied mechanism requires that the peculiar diffractions at the corrugated exit interface inspire strong energy transfer to higher orders, including those not coupled to an FB wave. At the opposite direction of incidence, transmission due to zero and some higher orders that may be coupled at the corrugated input interface can vanish. This leads to the alternative scenario of wideband unidirectional transmission, which itself does not need but can coexist with the other scenario based on the merging of asymmetric diffraction and dispersion of the FB mode.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(120.7000) Instrumentation, measurement, and metrology : Transmission
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: July 25, 2012
Manuscript Accepted: October 2, 2012
Published: November 22, 2012

Andriy E. Serebryannikov, Evrim Colak, A. Ozgur Cakmak, and Ekmel Ozbay, "Dispersion irrelevant wideband asymmetric transmission in dielectric photonic crystal gratings," Opt. Lett. 37, 4844-4846 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Wang, J. D. Chong, J. D. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 100, 013905 (2008). [CrossRef]
  2. A. Figotin and I. Vitebskiy, Phys. Rev. B 67, 165210 (2003). [CrossRef]
  3. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, J. Appl. Phys. 76, 2023 (1994). [CrossRef]
  4. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, Opt. Lett. 28, 637 (2003). [CrossRef]
  5. M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, Phys. Rev. E 74, 056611 (2006). [CrossRef]
  6. A. E. Serebryannikov, Phys. Rev. B 80, 155117 (2009). [CrossRef]
  7. A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, Opt. Express 18, 22283 (2010). [CrossRef]
  8. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Phys. Rev. Lett. 108, 213905 (2012). [CrossRef]
  9. C. Lu, X. Hu, and Q. Gong, Opt. Lett. 36, 4668 (2011). [CrossRef]
  10. A. E. Serebryannikov, A. O. Cakmak, and E. Ozbay, Opt. Express 20, 14980 (2012). [CrossRef]
  11. A. E. Serebryannikov, T. Magath, and K. Schuenemann, Phys. Rev. E 74, 066607 (2006). [CrossRef]
  12. X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011). [CrossRef]
  13. T. Magath and A. E. Serebryannikov, J. Opt. Soc. Am. A 22, 2405 (2005). [CrossRef]
  14. A. E. Serebryannikov, A. Y. Petrov, and E. Ozbay, Appl. Phys. Lett. 94, 181101 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited