OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 23 — Dec. 1, 2012
  • pp: 4850–4852

Isotropic and nondispersive planar fed Luneburg lens from Hamiltonian transformation optics

Oscar Quevedo-Teruel, Wenxuan Tang, and Yang Hao  »View Author Affiliations

Optics Letters, Vol. 37, Issue 23, pp. 4850-4852 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (639 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A modified Luneburg lens based on Hamiltonian optical transformation with planar feeds is proposed in this Letter. The lens, made of conventional all-dielectric materials, does not have any kind of anisotropy. Therefore, in theory, its bandwidth of operation has no upper frequency limitations in contrast with recent designs utilizing metamaterials. Results for wide-angle radiation and broadband operation are presented.

© 2012 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(080.3630) Geometric optics : Lenses
(220.3620) Optical design and fabrication : Lens system design
(220.3630) Optical design and fabrication : Lenses

Original Manuscript: August 31, 2012
Revised Manuscript: October 16, 2012
Manuscript Accepted: October 16, 2012
Published: November 22, 2012

Oscar Quevedo-Teruel, Wenxuan Tang, and Yang Hao, "Isotropic and nondispersive planar fed Luneburg lens from Hamiltonian transformation optics," Opt. Lett. 37, 4850-4852 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Luneburg, Mathematical Theory of Optics (Brown University, 1944).
  2. R. Ilinsky, J. Opt. A 2, 449 (2000). [CrossRef]
  3. A. Demetriadou and Y. Hao, Opt. Express 19, 19925(2011). [CrossRef]
  4. A. S. Gutman, J. Appl. Phys. 25, 855 (1954). [CrossRef]
  5. N. Kundtz and D. R. Smith, Nat. Mater. 9, 129 (2010). [CrossRef]
  6. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Science 323, 366 (2009). [CrossRef]
  7. A. Demetriadou and Y. Hao, IEEE Antennas Wireless Propag. Lett. 10, 1590 (2011).
  8. Y. Zhao, C. Argyropoulos, and Y. Hao, Opt. Express 16, 6717 (2008). [CrossRef]
  9. Y. Hao and R. Mittra, FDTD Modeling of Metamaterials: Theory and Applications (Artech House, 2008).
  10. B. Nistad and J. Skaar, Phys. Rev. E 78, 036603(2008). [CrossRef]
  11. K. Palmer, IEEE Spectrum 49, 13 (2012). [CrossRef]
  12. S. Tretyakov and S. Maslovski, IEEE Antennas Propag. Mag. 49, 37 (2007). [CrossRef]
  13. K. Z. Rajab, Y. Hao, D. Bao, C. G. Parini, J. Vazquez, and M. Philippakis, J. Appl. Phys. 108, 054904 (2010). [CrossRef]
  14. S. Hrabar, I. Krois, I. Bonic, and A. Kiricenko, Appl. Phys. Lett. 99, 254103 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited