OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 23 — Dec. 1, 2012
  • pp: 5018–5020

Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy

Shuo Pang, Chao Han, Mihoko Kato, Paul W. Sternberg, and Changhuei Yang  »View Author Affiliations


Optics Letters, Vol. 37, Issue 23, pp. 5018-5020 (2012)
http://dx.doi.org/10.1364/OL.37.005018


View Full Text Article

Enhanced HTML    Acrobat PDF (464 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we report a low-cost and simple wide field-of-view (FOV) on-chip fluorescence-imaging platform, termed fluorescence Talbot microscopy (FTM), which utilizes the Talbot self-imaging effect to enable efficient fluorescence imaging over a large and directly scalable FOV. The FTM prototype has a resolution of 1.2 μm and an FOV of 3.9mm×3.5mm. We demonstrate the imaging capability of FTM on fluorescently labeled breast cancer cells (SK-BR-3) and human embryonic kidney 293 (HEK) cells expressing green fluorescent protein.

© 2012 Optical Society of America

OCIS Codes
(110.6760) Imaging systems : Talbot and self-imaging effects
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: September 18, 2012
Revised Manuscript: October 24, 2012
Manuscript Accepted: November 5, 2012
Published: November 30, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Shuo Pang, Chao Han, Mihoko Kato, Paul W. Sternberg, and Changhuei Yang, "Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy," Opt. Lett. 37, 5018-5020 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-23-5018


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Collins, J. S. Weissman, and N. J. Krogan, Nat. Methods 6, 721 (2009). [CrossRef]
  2. B. Neumann, M. Held, U. Liebel, H. Erfle, P. Rogers, R. Pepperkok, and J. Ellenberg, Nat. Methods 3, 385 (2006). [CrossRef]
  3. K. H. Chung, M. M. Crane, and H. Lu, Nat. Methods 5, 637 (2008). [CrossRef]
  4. S. A. Arpali, C. Arpali, A. Coskun, H. H. Chiang, and A. Ozcan, Lab Chip 12, 4968 (2012). [CrossRef]
  5. A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, Analyst 136, 3512 (2011). [CrossRef]
  6. W. D. Montgomery, J. Opt. Soc. Am. 57, 772 (1967). [CrossRef]
  7. J. G. Wu, G. A. Zheng, Z. Li, and C. H. Yang, Opt. Lett. 36, 2179 (2011). [CrossRef]
  8. A. Orth and K. Crozier, Opt. Express 20, 13522 (2012). [CrossRef]
  9. A. W. Lohmann and D. E. Silva, Opt. Commun. 2, 413 (1971). [CrossRef]
  10. S. Pang, C. Han, L. M. Lee, and C. H. Yang, Lab Chip 11, 3698 (2011). [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics (Roberts, 1996).
  12. G. A. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. H. Yang, Proc. Natl. Acad. Sci. USA 108, 16889 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited