OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 24 — Dec. 15, 2012
  • pp: 5055–5057

Photonic millimeter-wave frequency multiplication based on cascaded four-wave mixing and polarization pulling

B. Vidal  »View Author Affiliations

Optics Letters, Vol. 37, Issue 24, pp. 5055-5057 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A technique for the frequency multiplication of microwave signals based on the combination of two optical nonlinear phenomena in a single nonlinear fiber is investigated. Multiple four-wave mixing is used to generate harmonics on an externally modulated optical carrier while polarization pulling through stimulated Brillouin scattering is used to filter the desired harmonics. Microwave signals in the 60 GHz region are generated showing harmonic frequency multiplication factors of up to 25 with a suppression of undesired harmonics better than 20 dB.

© 2012 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: September 5, 2012
Revised Manuscript: October 24, 2012
Manuscript Accepted: October 31, 2012
Published: December 5, 2012

B. Vidal, "Photonic millimeter-wave frequency multiplication based on cascaded four-wave mixing and polarization pulling," Opt. Lett. 37, 5055-5057 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Kawanishi, S. Oikawa, K. Yoshiara, T. Sakamoto, S. Shinada, and M. Izutsu, IEEE Photonics Technol. Lett. 17, 669 (2005). [CrossRef]
  2. W. Li and J. P. Yao, IEEE Trans. Microwave Theory Tech. 58, 3259 (2010). [CrossRef]
  3. B. Vidal, P. G. Huggard, B. N. Ellison, and N. J. Gomes, IEEE Electron. Lett. 46, 1449 (2010). [CrossRef]
  4. A. Wiberg, P. Pérez-Millán, M. V. Andrés, and P. O. Hedekvist, J. Lightwave Technol. 24, 329 (2006). [CrossRef]
  5. Q. Wang, H. Rideout, F. Zeng, and J. Yao, IEEE Photonics Technol. Lett. 18, 2460 (2006). [CrossRef]
  6. W. Li and J. P. Yao, IEEE Photon. J. 2, 954 (2010).
  7. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  8. C. J. McKinstrie and M. G. Raymer, Opt. Express 14, 9600 (2006). [CrossRef]
  9. A. Cerqueira, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernández-Figueroa, H. L. Fragnito, and J. C. Knight, Opt. Express 16, 2816 (2008). [CrossRef]
  10. L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, in Optical Fiber Communications, OSA Technical Digest CD (Optical Society of America, 2008) paper OML7.
  11. A. Wide, M. Tur, and A. Zadok, Opt. Express 19, 21945 (2011). [CrossRef]
  12. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506(2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited