OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 24 — Dec. 15, 2012
  • pp: 5082–5084

Miniaturized fiber in-line Mach–Zehnder interferometer based on inner air cavity for high-temperature sensing

T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang  »View Author Affiliations

Optics Letters, Vol. 37, Issue 24, pp. 5082-5084 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a miniaturized fiber in-line Mach–Zehnder interferometer based on an inner air cavity adjacent to the fiber core for high-temperature sensing. The inner air cavity is fabricated by femtosecond laser micromachining and the fusion splicing technique. Such a device is robust and insensitive to ambient refractive index change, and has high temperature sensitivity of 43.2pm/°C, up to 1000°C, and low cross sensitivity to strain.

© 2012 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6780) Instrumentation, measurement, and metrology : Temperature
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 19, 2012
Revised Manuscript: October 26, 2012
Manuscript Accepted: November 9, 2012
Published: December 6, 2012

T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, "Miniaturized fiber in-line Mach–Zehnder interferometer based on inner air cavity for high-temperature sensing," Opt. Lett. 37, 5082-5084 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Brambilla and H. Rutt, Appl. Phys. Lett. 80, 3259 (2002). [CrossRef]
  2. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, Meas. Sci. Technol. 17, 1009 (2006). [CrossRef]
  3. Y. Li, M. Yang, C. R. Liao, D. N. Wang, J. Lu, and P. X. Lu, IEEE J. Lightwave Technol. 29, 1555 (2011). [CrossRef]
  4. V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996). [CrossRef]
  5. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, Opt. Lett. 33, 1917 (2008). [CrossRef]
  6. Y. Zhu, P. Shum, H. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, Opt. Lett. 30, 367 (2005). [CrossRef]
  7. Y. Zhu, Z. Huang, F. Shen, and A. Wang, Opt. Lett. 30, 711 (2005). [CrossRef]
  8. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 2455 (2008). [CrossRef]
  9. D. Monzón-Hernández, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006). [CrossRef]
  10. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, Opt. Express 16, 11369 (2008). [CrossRef]
  11. Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010). [CrossRef]
  12. M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009). [CrossRef]
  13. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, Opt. Lett. 36, 3753 (2011). [CrossRef]
  14. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, J. Opt. Soc. Am. B 27, 370 (2010). [CrossRef]
  15. C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol. 12, 1784 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited