OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 24 — Dec. 15, 2012
  • pp: 5151–5153

Manipulating energy flow in variable-gap plasmonic waveguides

Weiren Zhu, Ivan D. Rukhlenko, and Malin Premaratne  »View Author Affiliations

Optics Letters, Vol. 37, Issue 24, pp. 5151-5153 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an effective generic method for manipulating energy flow in a metal–dielectric–metal plasmonic waveguide by spatially varying the thickness of the dielectric layer. To illustrate the utility of our method, we theoretically design a plasmonic convex lens and analyze its performance using full-wave numerical simulations. In particular, we show that such a lens is low dispersive and broadband.

© 2012 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

Original Manuscript: November 5, 2012
Revised Manuscript: November 16, 2012
Manuscript Accepted: November 16, 2012
Published: December 10, 2012

Weiren Zhu, Ivan D. Rukhlenko, and Malin Premaratne, "Manipulating energy flow in variable-gap plasmonic waveguides," Opt. Lett. 37, 5151-5153 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
  3. S. M. C. Abdulla, L. J. Kauppinen, G. J. M. Krijnen, and R. M. Ridder, Opt. Lett. 37, 2010 (2012). [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, Nat. Mater. 7, 442 (2008). [CrossRef]
  5. S. Kawata, Y. Inouye, and P. Verma, Nat. Photonics 3, 388 (2009).
  6. L. Cao and M. L. Brongersma, Nat. Photonics 3, 12 (2009).
  7. W. Zhu, I. D. Rukhlenko, and M. Premaratne, IEEE Photonics J. 4, 741 (2012).
  8. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, Opt. Express 19, 206 (2011). [CrossRef]
  9. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, Opt. Lett. 36, 3191 (2011). [CrossRef]
  10. M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media: Optical Amplifiers (Cambridge University, 2011).
  11. T. Wijesinghe and M. Premaratne, Opt. Express 20, 7151 (2012). [CrossRef]
  12. P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno, and F. J. Garcia-Vidal, Nano Lett. 10, 1985 (2010).
  13. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, Nano Lett. 10, 1985 (2010).
  14. W. Zhu, I. D. Rukhlenko, and M. Premaratne, J. Opt. Soc. Am. B 29, 2659 (2012). [CrossRef]
  15. S. I. Bozhevolnyi, Opt. Express 14, 9467 (2006). [CrossRef]
  16. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
  17. S. I. Bozhevolnyi and J. Jung, Opt. Express 16, 2676 (2008). [CrossRef]
  18. H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, Appl. Phys. Lett. 95, 094107 (2009). [CrossRef]
  19. A. Vakil and N. Engheta, Phys. Rev. B 85, 075434 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited