OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 24 — Dec. 15, 2012
  • pp: 5241–5243

Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal

Peixiong Zhang, Yin Hang, and LianHan Zhang  »View Author Affiliations

Optics Letters, Vol. 37, Issue 24, pp. 5241-5243 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of Pr3+ codoping for enhancement of the Ho3+:I65I75 mid-IR emissions were investigated in the LiLuF4 crystal for the first time. It was found that Pr3+ greatly increased Ho3+ 2.9 μm emission by depopulating the Ho3+:I75 level while having little influence on the Ho3+:I65 level, leading to greater population inversion. The energy transfer efficiency from Ho3+:I75 to Pr3+:F23 is calculated to be 88%. Based on Judd–Ofelt theory, the 2.9 μm emission cross section is calculated to be 1.91×1020cm2, and the gain property of the Ho3+:I65I75 transition is discussed. We propose that the Ho, Pr:LiLuF4 crystal may be a promising material for 2.9 μm laser applications.

© 2012 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.3220) Materials : Ionic crystals
(160.4760) Materials : Optical properties
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:

Original Manuscript: October 29, 2012
Revised Manuscript: November 21, 2012
Manuscript Accepted: November 21, 2012
Published: December 14, 2012

Peixiong Zhang, Yin Hang, and LianHan Zhang, "Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal," Opt. Lett. 37, 5241-5243 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. D. Aggarwal, L. B. Shaw, and J. S. Sanghera, Proc. SPIE 6453, 645312 (2007). [CrossRef]
  2. H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, Opt. Express 17, 15350 (2009). [CrossRef]
  3. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, IEEE J. Sel. Top. Quantum Electron. 15, 114 (2009). [CrossRef]
  4. B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, Opt. Commun. 191, 315 (2001). [CrossRef]
  5. M. C. Brierley, P. W. France, and C. A. Millar, Electron. Lett. 24, 539 (1988). [CrossRef]
  6. L. Wetenkamp, Electron. Lett. 26, 883 (1990). [CrossRef]
  7. Z. Chengchun, H. Yin, Z. Lianhan, Y. Jigang, H. Pengchao, and M. En, Opt. Mater. 33, 1610 (2011). [CrossRef]
  8. S. D. Jackson, F. Bugge, and G. Erbert, Opt. Lett. 32, 2496 (2007). [CrossRef]
  9. T. Hu, D. D. Hudson, and S. D. Jackson, Opt. Lett. 37, 2145 (2012). [CrossRef]
  10. D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, Electron. Lett. 47, 985 (2011). [CrossRef]
  11. S. D. Jackson, Opt. Lett. 34, 2327 (2009). [CrossRef]
  12. S. D. Jackson, Opt. Lett. 29, 334 (2004). [CrossRef]
  13. F. Cornacchia, A. Toncelli, and M. Tonelli, Prog. Quantum Electron. 33, 61 (2009). [CrossRef]
  14. S. L. Baldochi, K. Shimamura, K. Nakano, N. Mujilatu, and T. Fukuda, J. Cryst. Growth 205, 537 (1999). [CrossRef]
  15. T. H. Lee, Y. K. Kwon, and J. Heo, J. Non-Cryst. Solids 354, 3107 (2008). [CrossRef]
  16. B. F. Aull and H. P. Jenssen, IEEE J. Quantum Electron. 18, 925 (1982). [CrossRef]
  17. A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007). [CrossRef]
  18. W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4412 (1968). [CrossRef]
  19. D. E. McCumber, Phys. Rev. 136, A954 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited