OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 24 — Dec. 15, 2012
  • pp: 5253–5255

Beam shaping in spatially modulated broad-area semiconductor amplifiers

R. Herrero, M. Botey, M. Radziunas, and K. Staliunas  »View Author Affiliations

Optics Letters, Vol. 37, Issue 24, pp. 5253-5255 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (321 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and analyze a beam-shaping mechanism that in broad-area semiconductor amplifiers occurs due to spatial pump modulation on a micrometer scale. The study, performed under realistic parameters and conditions, predicts a spatial (angular) filtering of the radiation, which leads to a substantial improvement of the spatial quality of the beam during amplification. Quantitative analysis of spatial filtering performance is presented based on numerical integration of the paraxial propagation model and on analytical estimations.

© 2012 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(160.4236) Materials : Nanomaterials
(230.4480) Optical devices : Optical amplifiers

ToC Category:

Original Manuscript: October 16, 2012
Revised Manuscript: November 28, 2012
Manuscript Accepted: November 28, 2012
Published: December 14, 2012

R. Herrero, M. Botey, M. Radziunas, and K. Staliunas, "Beam shaping in spatially modulated broad-area semiconductor amplifiers," Opt. Lett. 37, 5253-5255 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Burkhard, M. O. Ziegler, I. Fischer, and W. Elsäßer, Chaos Solitons Fractals 10, 845 (1999). [CrossRef]
  2. L. Goldberg and M. K. Chun, Appl. Phys. Lett. 53, 1900 (1988). [CrossRef]
  3. M. Radziunas and K. Staliunas, Euro. Phys. Lett. 95, 14002 (2011). [CrossRef]
  4. V. Raab and R. Menzel, Opt. Lett. 27, 167 (2002). [CrossRef]
  5. S. K. Mandre, I. Fischer, and W. Elsäßer, Opt. Lett. 28, 1135 (2003). [CrossRef]
  6. V. I. Bespalov and V. I. Talanov, J. Exp. Theor. Phys. Lett. 3, 307 (1966).
  7. K. Staliunas, R. Herrero, and R. Vilaseca, Phys. Rev. A 80, 013821 (2009). [CrossRef]
  8. M. Botey, R. Herrero, and K. Staliunas, Phys. Rev. A 82, 013828 (2010). [CrossRef]
  9. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008). [CrossRef]
  10. S. Longhi, Phys. Rev. Lett. 103, 123601 (2009). [CrossRef]
  11. ISO Standard 11146, “Lasers and laser-related equipment. Test methods for laser beam widths, divergence angles and beam propagation ratios” (2005).
  12. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer-Verlag, 1999).
  13. G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989). [CrossRef]
  14. H. Adachihara, O. Hess, E. Abraham, P. Ru, and J. V. Moloney, J. Opt. Soc. Am. B 10, 658 (1993). [CrossRef]
  15. E. A. Ultanir, D. Michaelis, F. Ledeerer, and G. I. Stegeman, Opt. Lett. 28, 251 (2003). [CrossRef]
  16. K. Staliunas and R. Herrero, Phys. Rev. E 73, 016601 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited