OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 3 — Feb. 1, 2012
  • pp: 296–298

Terahertz bandpass filters using double-stacked metamaterial layers

Yanhan Zhu, Subash Vegesna, Vladimir Kuryatkov, Mark Holtz, Mohammad Saed, and Ayrton A. Bernussi  »View Author Affiliations

Optics Letters, Vol. 37, Issue 3, pp. 296-298 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (314 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bandpass filters are reported based on double-stacked metamaterial layers separated by an air gap for operation at terahertz frequencies. Several stacking configurations were investigated designed for a 0.5THz center frequency. The filters exhibited improved spectral transmission properties when compared with conventional ones based on single metamaterial layers. 3 dB bandwidth of 78GHz and sidelobe suppression ratio >16dB were determined when symmetric or asymmetric double layers were stacked. We demonstrate that superior frequency selectivity can be achieved when metamaterial layers with different unit cells are used. Good agreement was found between measured and simulated transmission response.

© 2012 Optical Society of America

OCIS Codes
(160.1245) Materials : Artificially engineered materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: September 28, 2011
Revised Manuscript: November 10, 2011
Manuscript Accepted: December 3, 2011
Published: January 19, 2012

Yanhan Zhu, Subash Vegesna, Vladimir Kuryatkov, Mark Holtz, Mohammad Saed, and Ayrton A. Bernussi, "Terahertz bandpass filters using double-stacked metamaterial layers," Opt. Lett. 37, 296-298 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Tanaka, M. Akazawa, and E. Sano, Jpn. J. Appl. Phys. 43, L-287 (2004).
  2. A. M. Melo, M. A. Kornberg, P. Kaufmann, M. H. Piazzetta, E. C. Bortolucci, M. B. Zakia, O. H. Bauer, A. Poglitsch, and A. M. P. A. da Silva, Appl. Opt. 47, 6064 (2008). [CrossRef]
  3. W. Withayachumnankul, B. M. Fischer, and D. Abbott, Opt. Commun. 281, 2374 (2008). [CrossRef]
  4. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, Appl. Phys. Lett. 97, 131106 (2010). [CrossRef]
  5. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, Opt. Express 19, 6990 (2011). [CrossRef]
  6. Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, Opt. Mater. Express 1, 151 (2011).
  7. F. Miyamaru, M. W. Takeda, and K. Taima, Appl. Phys. Express 2, 042001 (2009). [CrossRef]
  8. M. Lu, W. Li, and E. R. Brown, Opt. Lett. 36, 1071(2011). [CrossRef]
  9. J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, Opt. Express 17, 20307 (2009). [CrossRef]
  10. O. Paul, R. Beigang, and M. Rahm, Opt. Express 17, 18590 (2009). [CrossRef]
  11. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999). [CrossRef]
  12. Ansoft-HFSS User Guide, Ansys Inc., Version 13 (2010).
  13. M. Naftaly and R. E. Miles, J. Non-Cryst. Solids 351, 3341 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited