OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 3 — Feb. 1, 2012
  • pp: 311–313

Pure two-dimensional polarization patterns for holographic recording

Ulises Ruiz, Clementina Provenzano, Pasquale Pagliusi, and Gabriella Cipparrone  »View Author Affiliations

Optics Letters, Vol. 37, Issue 3, pp. 311-313 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (436 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-dimensional (2D) polarization patterns are achieved by the interference of two pairs of beams with perpendicular planes of incidence and orthogonal polarizations (i.e. linear or circular). In both cases, imposing a phase shift of π/2 between consecutive beams contains the amplitude modulation of the optical field in the superposition region and, thus, pure 2D polarization patterns are created. The recording of these interference fields in a polarization-sensitive material, namely an amorphous azopolymer, creates reconfigurable 2D periodic microstructures with peculiar diffraction properties.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.2880) Holography : Holographic interferometry
(230.4000) Optical devices : Microstructure fabrication
(260.1440) Physical optics : Birefringence
(160.5335) Materials : Photosensitive materials
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Diffraction and Gratings

Original Manuscript: September 23, 2011
Revised Manuscript: November 23, 2011
Manuscript Accepted: November 26, 2011
Published: January 19, 2012

Ulises Ruiz, Clementina Provenzano, Pasquale Pagliusi, and Gabriella Cipparrone, "Pure two-dimensional polarization patterns for holographic recording," Opt. Lett. 37, 311-313 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).
  2. C. Provenzano, P. Pagliusi, and G. Cipparrone, Appl. Phys. Lett. 89, 121105 (2006). [CrossRef]
  3. E. Nicolescu and M. J. Escuti, Appl. Opt. 49, 3900 (2010). [CrossRef]
  4. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, J. Nonlinear Opt. Phys. Mater. 18, 1 (2009). [CrossRef]
  5. L. Z. Cai, X. L. Yang, and Y. R. Wang, J. Opt. Soc. Am. A 19, 2238 (2002). [CrossRef]
  6. S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, Opt. Lett. 31, 3336 (2006). [CrossRef]
  7. A. Dwivedi, J. Xavier, J. Joseph, and K. Singh, Appl. Opt. 47, 1973 (2008). [CrossRef]
  8. D. Xu, K. P. Chen, K. Ohlinger, and Y. Lin, Appl. Phys. Lett. 93, 031101 (2008). [CrossRef]
  9. V. Arrizón, S. Chavez-Cerda, U. Ruiz, and R. Carrada, Opt. Express 15, 16748 (2007). [CrossRef]
  10. M. Boguslawski, P. Rose, and C. Denz, Appl. Phys. Lett. 98, 061111 (2011). [CrossRef]
  11. J. Xavier, P. Rose, B. Terhalle, J. Joseph, and C. Denz, Opt. Lett. 34, 2625 (2009). [CrossRef]
  12. V. Arrizón, D. Sánchez-de-la-Llave, G. Méndez, and U. Ruiz, Opt. Express 19, 10553 (2011). [CrossRef]
  13. G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, Macromolecules 41, 5992 (2008). [CrossRef]
  14. G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, J. Phys. Chem. B 114, 8900 (2010). [CrossRef]
  15. C. Provenzano, G. Cipparrone, and A. Mazzulla, Appl. Opt. 45, 3929 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited