OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 4 — Feb. 15, 2012
  • pp: 545–547

Surface plasmon polariton compression through radially and linearly polarized source

Remo Proietti Zaccaria, Francesco De Angelis, Andrea Toma, Luca Razzari, Alessandro Alabastri, Gobind Das, Carlo Liberale, and Enzo Di Fabrizio  »View Author Affiliations


Optics Letters, Vol. 37, Issue 4, pp. 545-547 (2012)
http://dx.doi.org/10.1364/OL.37.000545


View Full Text Article

Enhanced HTML    Acrobat PDF (518 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the possibility of realizing a radial mode on a metallic conical structure by means of a linearly polarized incident wave. This result is utilized for observing surface plasmon polaritons adiabatic compression on a tapered conical nanostructure. The ingredients for radial mode generation are described in terms of phase-matching of the components of the electromagnetic field. We conclude by showing the robustness of this approach, explaining the polaritonic behavior as a function of the device geometry.

© 2012 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 18, 2011
Revised Manuscript: December 12, 2011
Manuscript Accepted: December 23, 2011
Published: February 8, 2012

Citation
Remo Proietti Zaccaria, Francesco De Angelis, Andrea Toma, Luca Razzari, Alessandro Alabastri, Gobind Das, Carlo Liberale, and Enzo Di Fabrizio, "Surface plasmon polariton compression through radially and linearly polarized source," Opt. Lett. 37, 545-547 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-4-545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, J. Raman Spectrosc. 39, 1643 (2008). [CrossRef]
  2. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  3. C. Sheppard and A. Choudhury, Appl. Opt. 43, 4322 (2004). [CrossRef]
  4. W. Chen and Q. Zhan, Opt. Lett. 34, 2444 (2009). [CrossRef]
  5. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, Opt. Lett. 34, 971 (2009). [CrossRef]
  6. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, Opt. Express 18, 22305 (2010). [CrossRef]
  7. T. Grosjean, F. Baida, R. Adam, J-P. Guillet, L. Billot, P. Nouvel, J. Torres, A. Penarier, D. Charraut, and L. Chusseau, Opt. Express 16, 18895 (2008). [CrossRef]
  8. L. Razzari, A. Toma, M. Shalaby, M. Clerici, R. P. Zaccaria, C. Liberale, S. Marras, A. N. Ibraheem, G. Das, F. De Angelis, M. Peccianti, A. Falqui, T. Ozaki, R. Morandotti, and E. Di Fabrizio, Opt. Express 19, 26088 (2011). [CrossRef]
  9. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, J. Appl. Phys. 87, 3785 (2000). [CrossRef]
  10. M. I. Stockman, Phys. Rev. Lett. 93, 137404 (2004). [CrossRef]
  11. E. A. Ash and G. Nichols, Nature 237, 510 (1972). [CrossRef]
  12. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, Nano Lett. 8, 2321 (2008). [CrossRef]
  13. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, Nat. Nanotechnol. 5, 67 (2009). [CrossRef]
  14. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, Nat. Photon. 5, 682 (2011). [CrossRef]
  15. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, Phys. Rev. Lett. 105, 116804 (2010). [CrossRef]
  16. X. W. Chen, V. Sandoghdar, and M. Agio, Opt. Express 18, 10878 (2010). [CrossRef]
  17. A. D. Rakic, A. B. Djuriic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998). [CrossRef]
  18. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, Phys. Rev. B 67, 113103 (2003). [CrossRef]
  19. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  20. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  21. L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994). [CrossRef]
  22. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. B 76, 035420 (2007). [CrossRef]
  23. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, Phys. Rev. Lett. 107, 096801 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited