OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 4 — Feb. 15, 2012
  • pp: 584–586

Laser spot position dependence in photothermal mode cooling of a microcantilever

Hao Fu, Cunding Liu, Yong Liu, Jiaru Chu, and Gengyu Cao  »View Author Affiliations

Optics Letters, Vol. 37, Issue 4, pp. 584-586 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (442 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the laser spot position (LSP) dependence of photothermal mode cooling in a microcantilever-based Fabry–Perot cavity. Experiments on photothermal cooling demonstrate that the direction of photothermal backaction on the first two cantilever modes is LSP dependent, which can be either parallel or antiparallel. A theoretical analysis of this LSP-dependent effect identifies the parallel and the antiparallel coupling regions along the lever. Simulation results are in quantitative agreement with our experimental observations. We conclude that the cooling limit imposed by photothermal mode coupling can be surmounted by operating in the parallel coupling region.

© 2012 Optical Society of America

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(140.4780) Lasers and laser optics : Optical resonators
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 18, 2011
Revised Manuscript: December 15, 2011
Manuscript Accepted: December 15, 2011
Published: February 9, 2012

Hao Fu, Cunding Liu, Yong Liu, Jiaru Chu, and Gengyu Cao, "Laser spot position dependence in photothermal mode cooling of a microcantilever," Opt. Lett. 37, 584-586 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, Nat. Phys. 5, 485 (2009). [CrossRef]
  2. T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008). [CrossRef]
  3. J. Restrepo, J. Gabelli, C. Ciuti, and I. Favero, “Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator,” http://arxiv.org/abs/1011.3911 .
  4. S. Kuehn, S. A. Hickman, and J. A. Marohn, J. Chem. Phys. 128, 052208 (2008). [CrossRef]
  5. R. García and R. Pérez, Surf. Sci. Rep. 47, 197 (2002). [CrossRef]
  6. F. Marquardt and S. M. Girvin, Physics 2, 40 (2009). [CrossRef]
  7. J. H. Chow, B. S. Sheard, D. E. McClelland, and M. B. Gray, Opt. Lett. 30, 708 (2005). [CrossRef]
  8. C. H. Metzger and K. Karrai, Nature 432, 1002 (2004). [CrossRef]
  9. S. D. Liberato, N. Lambert, and F. Nori, Phys. Rev. A 83, 033809 (2011). [CrossRef]
  10. H. Fu, Y. Liu, J. Chen, and G. Cao, Sens. Actuators A 163, 533 (2010). [CrossRef]
  11. C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, Phys. Rev. B 78, 035309 (2008). [CrossRef]
  12. G. Jourdan, F. Comin, and J. Chevrier, Phys. Rev. Lett. 101, 133904 (2008). [CrossRef]
  13. K. J. Bruland, J. L. Garbini, W. M. Dougherty, S. H. Chao, S. E. Jensen, and J. A. Sidles, Rev. Sci. Instrum. 70, 3542 (1999). [CrossRef]
  14. C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, Phys. Rev. Lett. 101, 133903 (2008). [CrossRef]
  15. J. R. Serrano, L. M. Phinney, and J. W. Rogers, Int. J. Heat Mass Transfer 52, 2255 (2009). [CrossRef]
  16. G. C. Ratcliff, D. A. Erie, and R. Superfine, Appl. Phys. Lett. 72, 1911 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited