OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 5 — Mar. 1, 2012
  • pp: 860–862

Origin of thermally induced second harmonic generation in PbOB2O3 glasses

Qiming Liu and Jincheng Du  »View Author Affiliations

Optics Letters, Vol. 37, Issue 5, pp. 860-862 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical second harmonic generation (SHG) with second-order nonlinearity χ(2) as high as 2.1pm/V has been achieved in water quenched PbOB2O3 glasses. No nonlinear depletion layer or microcrystals were observed in these glasses and the mechanism for nonlinearity has been explored in this Letter. Our results show that the possible mechanism for SHG in these glasses can be attributed to their low thermal conductivity that led to a large surface stress gradient, which broke the inversion symmetry of the glasses and subsequently induced the nonlinear effect. These findings suggest that low thermal conductivity induced high stress gradients to lead to large SHG.

© 2012 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4330) Materials : Nonlinear optical materials
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

Original Manuscript: November 29, 2011
Revised Manuscript: January 15, 2012
Manuscript Accepted: January 17, 2012
Published: February 24, 2012

Qiming Liu and Jincheng Du, "Origin of thermally induced second harmonic generation in PbO–B2O3 glasses," Opt. Lett. 37, 860-862 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, Opt. Lett. 16, 1732 (1991). [CrossRef]
  2. Q. Liu, B. Poumellec, D. Braga, G. Blaise, Y. Ren, and M. Kristensen, Appl. Phys. Lett. 87, 121906 (2005). [CrossRef]
  3. A. Okada, K. Ishii, K. Mito, and K. Sasaki, Appl. Phys. Lett. 60, 2853 (1992). [CrossRef]
  4. P. G. Kazansky, A. Kamal, and P. St. J. Russell, Opt. Lett. 18, 693 (1993). [CrossRef]
  5. Q. Liu, F. Gan, X. Zhao, K. Tanaka, A. Narazaki, and K. Hirao, Opt. Lett. 26, 1347 (2001). [CrossRef]
  6. T. Fujiwara, M. Takahashi, and A. Ikushima, Appl. Phys. Lett. 71, 1032 (1997). [CrossRef]
  7. M. Fokine, K. Saito, and A. J. Ikushima, Appl. Phys. Lett. 87, 171907 (2005). [CrossRef]
  8. Q. Liu, M. Wang, and X. Zhao, Proc. SPIE 7279, 72790S (2008). [CrossRef]
  9. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, Phys. Rev. Lett. 8, 21 (1962). [CrossRef]
  10. H. D. Jannek and D. E. Day, J. Am. Ceram. Soc. 64, 227 (1981). [CrossRef]
  11. C. M. Hony and D. E. Day, J. Non-Cryst. Solids 46, 389 (1981). [CrossRef]
  12. B. N. Meera, A. K. Sood, N. Chandrabhas, and J. Ramakrishna, J. Non-Cryst. Solids 126, 224 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited