OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 5 — Mar. 1, 2012
  • pp: 866–868

Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading

Haiting Zhang, Shilong Pan, Menghao Huang, and Xiangfei Chen  »View Author Affiliations

Optics Letters, Vol. 37, Issue 5, pp. 866-868 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel integrable modulator consisting of a polarization modulator and a polarizer is proposed for constructing a high-performance analog photonic link. By adjusting a polarization controller placed before the modulator, both amplitude modulation and phase modulation with adjustable ratio between them are implemented. This feature is used to shift the peak of the frequency response of a dispersive link to any desired frequency, so the dispersion-induced power fading around the frequency is compensated. A proof-of-concept experiment is performed. The compensation of the dispersion-induced power fading in the proposed analog photonic link increases the spur-free dynamic range as large as 12.5 dB.

© 2012 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(130.4110) Integrated optics : Modulators

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 4, 2012
Manuscript Accepted: January 11, 2012
Published: February 24, 2012

Haiting Zhang, Shilong Pan, Menghao Huang, and Xiangfei Chen, "Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading," Opt. Lett. 37, 866-868 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, J. Lightwave Technol. 29, 1182 (2011). [CrossRef]
  2. J. Park, W. V. Sorin, and K. Y. Lau, Electron. Lett. 33, 512 (1997). [CrossRef]
  3. J. Li, T. G. Ning, L. Pei, C. H. Qi, X. D. Hu, and Q. Zhou, IEEE Photon. Technol. Lett. 22, 516 (2010). [CrossRef]
  4. S. R. Blais and J. P. Yao, IEEE Photon. Technol. Lett. 18, 2230 (2006). [CrossRef]
  5. G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997). [CrossRef]
  6. C. Lim, A. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, J. Lightwave Technol. 25, 1602 (2007). [CrossRef]
  7. B. Hraimel, X. P. Zhang, Y. Q. Pei, K. Wu, T. J. Liu, T. F. Xu, and Q. H. Nie, J. Lightwave Technol. 29, 775 (2011). [CrossRef]
  8. Z. Z. Tang, S. L. Pan, and J. P. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express, submitted for publication.
  9. G. H. Nguyen, J. Poette, and B. Cabon, J. Lightwave Technol. 29, 1753 (2011). [CrossRef]
  10. S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, Opt. Lett. 36, 546 (2011). [CrossRef]
  11. S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 21, 929 (2009). [CrossRef]
  12. B. M. Haas and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007). [CrossRef]
  13. J. P. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 25, 3219 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited