OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 5 — Mar. 1, 2012
  • pp: 872–874

Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes

Jason M. Tucker-Schwartz, Tu Hong, Daniel C. Colvin, Yaqiong Xu, and Melissa C. Skala  »View Author Affiliations

Optics Letters, Vol. 37, Issue 5, pp. 872-874 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (310 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate polyethylene-glycol-coated single-walled carbon nanotubes (CNTs) as contrast agents for both photothermal optical coherence tomography (OCT) and magnetic-resonance imaging (MRI). Photothermal OCT was accomplished with a spectral domain OCT system with an amplitude-modulated 750 nm pump beam using 10 mW of power, and T2 MRI was achieved with a 4.7 T animal system. Photothermal OCT and T2 MRI achieved sensitivities of nanomolar concentrations to CNTs dispersed in amine-terminated polyethylene glycol, thus establishing the potential for dual-modality molecular imaging with CNTs.

© 2012 Optical Society of America

OCIS Codes
(110.4190) Imaging systems : Multiple imaging
(110.4500) Imaging systems : Optical coherence tomography
(160.4236) Materials : Nanomaterials

ToC Category:
Imaging Systems

Original Manuscript: December 12, 2011
Revised Manuscript: January 19, 2012
Manuscript Accepted: January 19, 2012
Published: February 24, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Jason M. Tucker-Schwartz, Tu Hong, Daniel C. Colvin, Yaqiong Xu, and Melissa C. Skala, "Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes," Opt. Lett. 37, 872-874 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, Proc. Natl. Acad. Sci. USA 107, 8085 (2010). [CrossRef]
  2. A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, J. Biomed. Opt. 11, 041121 (2006). [CrossRef]
  3. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, Nano Lett. 8, 3461 (2008). [CrossRef]
  4. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, Opt. Express 16, 4376 (2008). [CrossRef]
  5. C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, Opt. Lett. 35, 700 (2010). [CrossRef]
  6. A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, Nat. Nanotechnol. 3, 557 (2008). [CrossRef]
  7. A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, Nano Lett. 10, 2168 (2010). [CrossRef]
  8. H. K. Moon, S. H. Lee, and H. C. Choi, ACS Nano 3, 3707 (2009). [CrossRef]
  9. J. S. Ananta, M. L. Matson, A. M. Tang, T. Mandal, S. Lin, K. Wong, S. T. Wong, and L. J. Wilson, J. Phys. Chem. C 113, 19369 (2009). [CrossRef]
  10. Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, X. Chen, and H. Dai, Nat. Nanotechnol. 2, 47 (2007). [CrossRef]
  11. Z. Liu, S. M. Tabakman, Z. Chen, and H. Dai, Nat. Protoc. 4, 1372 (2009). [CrossRef]
  12. A. M. Tang, J. S. Ananta, H. Zhao, B. T. Cisneros, E. Y. Lam, S. T. Wong, L. J. Wilson, and K. K. Wong, Contrast Media Mol. Imaging 6, 93 (2011). [CrossRef]
  13. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002). [CrossRef]
  14. J. C. Gore, T. E. Yankeelov, T. E. Peterson, and M. J. Avison, J. Nucl. Med. 50, 999 (2009). [CrossRef]
  15. B. D. Holt, K. N. Dahl, and M. F. Islam, Small 7, 2348 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited