OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 5 — Mar. 1, 2012
  • pp: 960–962

Terahertz photonic states in semiconductor–graphene cylinder structures

Yizhe Yuan, Jianquan Yao, and Wen Xu  »View Author Affiliations

Optics Letters, Vol. 37, Issue 5, pp. 960-962 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a semiconductor–graphene cylinder that can serve as a terahertz (THz) photonic crystal. In such a structure, graphene plays a role in achieving a strong mismatch of the dielectric constant at the semiconductor–graphene interface due to its two-dimensional nature and relatively low value of the dielectric constant. We find that when the radius of the outer semiconductor layer is about ρ1100μm, the frequencies of the photonic modes are within the THz bandwidth and they can be efficiently tuned via varying ρ1. Furthermore, the dispersion relation of the photonic modes shows that a semiconductor–graphene cylinder is of excellent light transport properties, which can be utilized for the THz waveguide. This study is pertinent to the application of graphene as THz photonic devices.

© 2012 Optical Society of America

OCIS Codes
(220.4610) Optical design and fabrication : Optical fabrication
(230.7370) Optical devices : Waveguides
(350.5500) Other areas of optics : Propagation
(160.4236) Materials : Nanomaterials
(160.5298) Materials : Photonic crystals
(110.6795) Imaging systems : Terahertz imaging

ToC Category:

Original Manuscript: December 14, 2011
Manuscript Accepted: January 7, 2012
Published: February 29, 2012

Yizhe Yuan, Jianquan Yao, and Wen Xu, "Terahertz photonic states in semiconductor–graphene cylinder structures," Opt. Lett. 37, 960-962 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987). [CrossRef]
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987). [CrossRef]
  3. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998). [CrossRef]
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1370 (1999). [CrossRef]
  5. P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, Appl. Phys. Lett. 64, 687 (1994). [CrossRef]
  6. Z. Y. Li, L. L. Lin, and Z. Q. Zhang, Phys. Rev. Lett. 84, 4341 (2000). [CrossRef]
  7. For a review, see, e.g., A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). [CrossRef]
  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). [CrossRef]
  9. X. Wang, L. Zhi, and K. Müllen, Nano Lett. 8, 323 (2008). [CrossRef]
  10. W. Xu, Y. P. Gong, L. W. Liu, H. Qin, and Y. L. Shi, Nanoscale Res. Lett. 6, 250 (2011). [CrossRef]
  11. P. Diament, Wave Transmission and Fiber Optics(Macmillan, 1990).
  12. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
  13. B. Ferguson and X. C. Zhang, Nat. Mater. 1, 26 (2002). [CrossRef]
  14. For a review, see, e.g., P. H. Siegel, IEEE Trans. Microw. Theory Technol. 50, 910 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited