OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 6 — Mar. 15, 2012
  • pp: 1032–1034

Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate

Greg Stone and Volkmar Dierolf  »View Author Affiliations


Optics Letters, Vol. 37, Issue 6, pp. 1032-1034 (2012)
http://dx.doi.org/10.1364/OL.37.001032


View Full Text Article

Enhanced HTML    Acrobat PDF (309 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report changes in the Raman spectra at ferroelectric domain walls in near-stoichiometric LiNbO3 and stoichiometric LiTaO3. We find a decrease of intensity for the regular bulk Raman peaks along with increases of intensity in spectral regions that correspond to phonons, which propagate at an angle with respect to the incident light. In the backscattering geometry, such modes are not supported in the bulk crystal due to momentum conservation. We confirm that these changes are due to the domain wall itself and are independent of intrinsic defects or charging effects.

© 2012 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Spectroscopy

History
Original Manuscript: December 13, 2011
Revised Manuscript: January 13, 2012
Manuscript Accepted: January 18, 2012
Published: March 8, 2012

Citation
Greg Stone and Volkmar Dierolf, "Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate," Opt. Lett. 37, 1032-1034 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-6-1032


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Bandyopadhyay and P. C. Ray, J. Appl. Phys. 95, 226 (2004). [CrossRef]
  2. M. Calleja, M. T. Dove, and E. K. H. Salje, J. Phys. Condens. Matter 15, 2301 (2003). [CrossRef]
  3. W. Cao, G. Barsch, and J. Krumhansl, Phys. Rev. B 42, 6396 (1990). [CrossRef]
  4. H. Chaib, T. Otto, and L. Eng, Phys. Status Solidi B 233, 250 (2002). [CrossRef]
  5. H. Chaib, F. Schlaphof, T. Otto, and L. M. Eng, Ferroelectrics 291, 143 (2003). [CrossRef]
  6. S. Choudhury, Y. Li, N. Odagawa, A. Vasudevarao, L. Tian, P. Capek, V. Dierolf, A. N. Morozovska, E. A. Eliseev, S. Kalinin, Y. Cho, L.-Q. Chen, and V. Gopalan, J. Appl. Phys. 104, 084107 (2008). [CrossRef]
  7. D. Lee, H. Xu, V. Dierolf, V. Gopalan, and S. R. Phillpot, Phys. Rev. B 82, 014104 (2010). [CrossRef]
  8. B. Meyer and D. Vanderbilt, Phys. Rev. B 65, 104111 (2002). [CrossRef]
  9. J. Padilla, W. Zhong, and D. Vanderbilt, Phys. Rev. B 53, R5969 (1996). [CrossRef]
  10. X. Yang, G. Lan, B. Li, and H. Wang, Phys. Status Solidi B 142, 287 (1987). [CrossRef]
  11. V. A. Klimenko, P. A. Korotkov, and G. S. Felinskii, Opt. Spectrosc. 54, 476 (1983), English translation.
  12. E. Schuller, R. Claus, H. J. Falge, and G. Borstel, Z. Naturforsch. A 32, 47 (1977).
  13. R. Loudon, Adv. Phys. 13, 423 (1964). [CrossRef]
  14. V. Dierolf and C. Sandmann, Appl. Phys. B 78, 363 (2004). [CrossRef]
  15. P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopalan, Phys. Status Solidi C 4, 830 (2007). [CrossRef]
  16. R. Hammoum, M. D. Fontana, P. Bourson, and V. Y. Shur, Appl. Phys. A 91, 65 (2008). [CrossRef]
  17. P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, Appl. Phys. A 99, 741 (2010). [CrossRef]
  18. Y. Kong, J. Xu, B. Li, S. Chen, Z. Huang, L. Zhang, S. Liu, W. Yan, H. Liu, X. Xie, L. Shi, X. Li, and G. Zhang, Opt. Mater. 27, 471 (2004). [CrossRef]
  19. D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, J. Appl. Phys. 101, 093108 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited