OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 7 — Apr. 1, 2012
  • pp: 1235–1237

Realizable planar gradient-index solar lenses

Panagiotis Kotsidas, Vijay Modi, and Jeffrey M. Gordon  »View Author Affiliations


Optics Letters, Vol. 37, Issue 7, pp. 1235-1237 (2012)
http://dx.doi.org/10.1364/OL.37.001235


View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of single element planar hemispherical gradient-index solar lenses that can accommodate the constraints of realistic materials and fabrication techniques are presented, and simulated with an extended and polychromatic solar source for concentrator photovoltaics at flux concentration values exceeding 1000 suns. The planar hemispherical far-field lens is created from a near-field unit magnification spherical gradient-index design, and illustrated with an f/1.40 square solar lens that allows lossless packing within a concentrator module.

© 2012 Optical Society of America

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(220.1770) Optical design and fabrication : Concentrators
(350.6050) Other areas of optics : Solar energy

ToC Category:
Imaging Systems

History
Original Manuscript: December 19, 2011
Revised Manuscript: January 31, 2012
Manuscript Accepted: January 31, 2012
Published: March 27, 2012

Citation
Panagiotis Kotsidas, Vijay Modi, and Jeffrey M. Gordon, "Realizable planar gradient-index solar lenses," Opt. Lett. 37, 1235-1237 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-7-1235


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Winston, P. Benítez, and J. C. Miñano, with contributions from N. Shatz and J. Bortz, Nonimaging Optics (Elsevier, 2005).
  2. J. M. Gordon, Opt. Express 18, A41 (2010). [CrossRef]
  3. G. Beadie, J. S. Shirk, A. Rosenberg, P. A. Lane, E. Fleet, A. R. Kamdar, Y. Jin, M. Ponting, T. Kazmierczak, Y. Yang, A. Hiltner, and E. Baer, Opt. Express 16, 11540 (2008).
  4. M. Ponting, A. Hiltner, and E. Baer, Macromol. Symp. 294, 19 (2010). [CrossRef]
  5. P. Kotsidas, V. Modi, and J. M. Gordon, Opt. Express 19, 2325 (2011). [CrossRef]
  6. P. Kotsidas, V. Modi, and J. M. Gordon, Opt. Express 19, 15584 (2011). [CrossRef]
  7. J. C. Maxwell, Q. J. Pure Appl. Math. 2, 233 (1854).
  8. R. K. Luneburg, The Mathematical Theory of Optics(University California Berkeley, 1964).
  9. M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University, 1999).
  10. J. M. Gordon, D. Feuermann, and P. Young, Opt. Lett. 33, 1114 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited