OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 8 — Apr. 15, 2012
  • pp: 1337–1339

Generating maximum entanglement under asymmetric couplings to surface plasmons

Guang-Yin Chen, Che-Ming Li, and Yueh-Nan Chen  »View Author Affiliations

Optics Letters, Vol. 37, Issue 8, pp. 1337-1339 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Generating entangled states is a vital ingredient for quantum information engineering. Here, we investigate the entanglement generation between two quantum dots coupled to nanoring surface plasmons with asymmetric coupling strength g1 and g2. The dynamics of concurrence C is obtained by solving the corresponding master equation. High entanglement can be generated at appropriate times through the scatterings of the incident field and its scattered field. Furthermore, we find that maximum entanglement can be created when rg1/g2 is the ratio of odd numbers. Contrary to intuition, relative high entanglement (C1) can remain even if the ratio r is far off the required values, which is useful in real experiments.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(270.0270) Quantum optics : Quantum optics
(270.1670) Quantum optics : Coherent optical effects
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Quantum Optics

Original Manuscript: December 1, 2011
Revised Manuscript: February 16, 2012
Manuscript Accepted: February 21, 2012
Published: April 10, 2012

Guang-Yin Chen, Che-Ming Li, and Yueh-Nan Chen, "Generating maximum entanglement under asymmetric couplings to surface plasmons," Opt. Lett. 37, 1337-1339 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Zia and M. L. Brongersma, Nature Nanotechnol. 2, 426 (2007). [CrossRef]
  2. K. Yu. Bliokh, Yu. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, Rev. Mod. Phys. 80, 1201 (2008). [CrossRef]
  3. S. Savel’ev, V. A. Yampol’skii, A. L. Rakhmanov, and F. Nori, Rep. Prog. Phys. 73, 026501 (2010). [CrossRef]
  4. Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, Phys. Rev. A 79, 033815 (2009).
  5. S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, J. Phys. Chem. C 115, 24469 (2011).
  6. Z. R. Lin, G. P. Guo, T. Tu, H. O. Li, C. L. Zou, J. X. Chen, Y. H. Lu, X. F. Ren, and G. C. Guo, Phys. Rev. B 82, 241401 (2010).
  7. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, Phys. Rev. Lett. 101, 100501 (2008).
  8. G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, Phys. Rev. B 84, 045310 (2011).
  9. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, Phys. Rev. Lett. 106, 020501 (2011). [CrossRef]
  10. K. Srinivasan and O. Painter, Nature 450, 862 (2007). [CrossRef]
  11. S. B. Zheng and G. C. Guo, Phys. Rev. Lett. 85, 2392 (2000). [CrossRef]
  12. M. S. Kim, Jinhyoung Lee, D. Ahn, and P. L. Knight, Phys. Rev. A 65, 040101 (2002).
  13. M. J. Kastoryano, F. Reiter, and A. S. Sørensen, Phys. Rev. Lett. 106, 090502 (2011). [CrossRef]
  14. Here we assume that the interdot distance is not long, such that the two quantum dots can simultaneously couple to the k-mode field.
  15. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998). [CrossRef]
  16. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007). [CrossRef]
  17. C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, Nano Lett. 10, 2525 (2010).
  18. J. K. Yang, Jpn. J. Appl. Phys. 50, 060205 (2011). [CrossRef]
  19. L. O. Diniz, E. Marega, F. D. Nunes, and B.-H. V. Borges, J. Opt. 13, 115001 (2011). [CrossRef]
  20. J. S. Jin, C. S. Yu, and H. S. Song, Phys. Rev. A 81, 042309 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited