OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 8 — Apr. 15, 2012
  • pp: 1355–1357

Single-shot photonic time-intensity integration based on a time-spectrum convolution system

Antonio Malacarne, Reza Ashrafi, Ming Li, Sophie LaRochelle, Jianping Yao, and José Azaña  »View Author Affiliations

Optics Letters, Vol. 37, Issue 8, pp. 1355-1357 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (782 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Real-time and single-shot ultra-fast photonic time-intensity integration of arbitrary temporal waveforms is proposed and demonstrated. The intensity-integration concept is based on a time-spectrum convolution system, where the use of a multi-wavelength laser with a flat envelope, employed as the incoherent broadband source, enables single-shot operation. The experimental implementation is based on optical intensity modulation of the multi-wavelength laser with the input waveform, followed by linear dispersion. In particular, photonic temporal intensity integration with a processing bandwidth of 36.8 GHz over an integration time window of 1.24 ns is verified by experimentally measuring the integration of an ultra-short microwave pulse and an arbitrary microwave waveform.

© 2012 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(200.4740) Optics in computing : Optical processing
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: December 19, 2011
Revised Manuscript: February 27, 2012
Manuscript Accepted: February 28, 2012
Published: April 11, 2012

Antonio Malacarne, Reza Ashrafi, Ming Li, Sophie LaRochelle, Jianping Yao, and José Azaña, "Single-shot photonic time-intensity integration based on a time-spectrum convolution system," Opt. Lett. 37, 1355-1357 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).
  2. C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microwave Theory Tech. 54, 1043 (2006). [CrossRef]
  3. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T. Ahn, S. LaRochelle, and J. Azaña, Opt. Express 16, 18202 (2008). [CrossRef]
  4. Y. Park, T. Ahn, Y. Dai, J. Yao, and J. Azaña, Opt. Express 16, 17817 (2008). [CrossRef]
  5. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 1, 29 (2010). [CrossRef]
  6. N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995). [CrossRef]
  7. Y. Park and J. Azaña, Opt. Lett. 34, 1156 (2009). [CrossRef]
  8. M. Asghari, Y. Park, and J. Azaña, Opt. Lett. 36, 3557 (2011). [CrossRef]
  9. Y. Park and J. Azaña, Opt. Lett. 35, 796 (2010). [CrossRef]
  10. X. Yi and R. A. Minasian, J. Lightwave Technol. 24, 4959 (2006). [CrossRef]
  11. V. Torres-Company and L. Chen, Opt. Express 17, 22553 (2009). [CrossRef]
  12. Y. Kim, S. Doucet, and S. LaRochelle, IEEE Photon. Technol. Lett. 20, 1718 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited