OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 8 — Apr. 15, 2012
  • pp: 1379–1381

Hyperfine Paschen–Back regime realized in Rb nanocell

Armen Sargsyan, Grant Hakhumyan, Claude Leroy, Yevgenya Pashayan-Leroy, Aram Papoyan, and David Sarkisyan  »View Author Affiliations

Optics Letters, Vol. 37, Issue 8, pp. 1379-1381 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (340 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple and efficient scheme based on a one-dimensional nanometric-thin cell filled with Rb and strong permanent ring magnets allows direct observation of the hyperfine Paschen–Back regime on the D1 line in the 0.5–0.7 T magnetic field. Experimental results are perfectly consistent with the theory. In particular, with σ+ laser excitation, the slopes of the B-field dependence of frequency shifts for all 10 individual transitions of Rb85,87 are the same and equal to 18.6MHz/mT. Possible applications for magnetometry with submicron spatial resolution and tunable atomic frequency references are discussed.

© 2012 Optical Society of America

OCIS Codes
(300.6360) Spectroscopy : Spectroscopy, laser
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Atomic and Molecular Physics

Original Manuscript: January 31, 2012
Manuscript Accepted: February 17, 2012
Published: April 12, 2012

Virtual Issues
May 23, 2012 Spotlight on Optics

Armen Sargsyan, Grant Hakhumyan, Claude Leroy, Yevgenya Pashayan-Leroy, Aram Papoyan, and David Sarkisyan, "Hyperfine Paschen–Back regime realized in Rb nanocell," Opt. Lett. 37, 1379-1381 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Budker, D. F. Kimball, and D. P. DeMille, Atomic Physics: An Exploration through Problems and Solutions(Oxford Univ., 2004).
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005). [CrossRef]
  3. S. Knappe, L. Hollberg, and J. Kitching, Opt. Lett. 29, 388 (2004). [CrossRef]
  4. A. Sargsyan, G. Hakhumyan, A. Papoyan, D. Sarkisyan, A. Atvars, and M. Auzinsh, Appl. Phys. Lett. 93, 021119 (2008). [CrossRef]
  5. T. Baluktsian, C. Urban, T. Bublat, H. Giessen, R. Löw, and T. Pfau, Opt. Lett. 35, 1950 (2010). [CrossRef]
  6. G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, D. Sarkisyan, and M. Auzinsh, Opt. Commun. 284, 4007 (2011). [CrossRef]
  7. P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, and N. Cyr, Phys. Rev. A 42, 2766 (1990). [CrossRef]
  8. N. Papageorgiou, A. Weis, V. Sautenkov, D. Bloch, and M. Ducloy, Appl. Phys. B: Lasers Opt. 59, 123 (1994). [CrossRef]
  9. G. Školnik, N. Vujičić, and T. Ban, Opt. Commun. 282, 1326 (2009). [CrossRef]
  10. G. Hakhumyan, A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Express 18, 14577 (2010). [CrossRef]
  11. E. B. Alexandrov, M. P. Chaika, and G. I. Khvostenko, Interference of Atomic States (Springer-Verlag, 1993).
  12. B. A. Olsen, B. Patton, Y.-Y. Jau, and W. Happer, Phys. Rev. A 84, 063410 (2011). [CrossRef]
  13. D. A. Steck, “Rubidium 85 D line data, Rubidium 87 D line data,” http://steck.us/alkalidata .
  14. D. Sarkisyan, A. Papoyan, T. Varzhapetyan, K. Blušs, and M. Auzinsh, J. Opt. Soc. Am. B 22, 88 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited