OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 9 — May. 1, 2012
  • pp: 1424–1426

Design and fabrication of rod-type two-dimensional photonic crystal slabs with large high-order bandgaps in near-infrared wavelengths

Liyong Jiang, Wei Jia, Gaige Zheng, and Xiangyin Li  »View Author Affiliations

Optics Letters, Vol. 37, Issue 9, pp. 1424-1426 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (695 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We proposed a novel two-dimensional photonic crystal slab comprised of a number of silicon rods with different radii and locations in the square-lattice unit cell pattern. Such rod-type photonic crystal slabs were automatically optimized by the genetic algorithm and fabricated on the silicon-on-insulator wafer. In particular, the measured transmission spectra of the five-rods sample have shown a large accepted high-order bandgap between 1498 and 1648 nm (gap size is 9.54%). Based on the theories of multiple Bragg and Mie scattering effects, we have given a reasonable explanation to the large high-order bandgaps found in the present study.

© 2012 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: December 2, 2011
Revised Manuscript: March 2, 2012
Manuscript Accepted: March 5, 2012
Published: April 19, 2012

Liyong Jiang, Wei Jia, Gaige Zheng, and Xiangyin Li, "Design and fabrication of rod-type two-dimensional photonic crystal slabs with large high-order bandgaps in near-infrared wavelengths," Opt. Lett. 37, 1424-1426 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000). [CrossRef]
  2. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003). [CrossRef]
  3. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, Appl. Phys. Lett. 84, 3885 (2004). [CrossRef]
  4. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Phys. Rev. Lett. 94, 073903 (2005). [CrossRef]
  5. M. S. Kushwaha, Int. J. Mod. Phys. B 10, 977 (1996). [CrossRef]
  6. Z. Y. Li, B. Y. Gu, and G. Z. Yang, Phys. Rev. Lett. 81, 2574 (1998). [CrossRef]
  7. C. M. Anderson and K. P. Giapis, Phys. Rev. Lett. 77, 2949 (1996). [CrossRef]
  8. T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, and R. Alcubilla, Phys. Rev. B 69, 235112 (2004). [CrossRef]
  9. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, Appl. Phys. Lett. 87, 061107 (2005). [CrossRef]
  10. F. Wen, S. David, X. Checoury, M. El Kurdi, and P. Boucaud, Opt. Express 16, 12278 (2008). [CrossRef]
  11. L. Jia and E. L. Thomas, Phys. Rev. A 84, 033810 (2011). [CrossRef]
  12. C. Rockstuhl, U. Peschel, and F. Lederer, Opt. Lett. 31, 1741 (2006). [CrossRef]
  13. M. Florescu, S. Torquato, and P. J. Steinhardt, Phys. Rev. B 80, 155112 (2009). [CrossRef]
  14. N. Horiuchi, Y. Segawa, T. Nozokido, K. Mizuno, and H. Miyazaki, Opt. Lett. 29 (10), 1084 (2004). [CrossRef]
  15. J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, Ewjm van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, Appl. Phys. Lett. 93, 051117 (2008). [CrossRef]
  16. L. F. Shen, Z. Ye, and S. L. He, Phys. Rev. B 68, 035109 (2003). [CrossRef]
  17. S. Preble, M. Lipson, and H. Lipson, Appl. Phys. Lett. 86, 061111 (2005). [CrossRef]
  18. L. Y. Jiang, H. P. Li, G. G. Zheng, X. Y. Li, and R. H. Zhu, J. Mod. Opt. 56, 1220 (2009). [CrossRef]
  19. W. Jia, J. Deng, A. M. Sahadevan, H. Wu, L. Y. Jiang, X. Y. Li, C. S. Bhatia, H. Yang, and A. J. Danner, Appl. Phys. Lett. 98, 241102 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited