OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 9 — May. 1, 2012
  • pp: 1541–1543

Saturation of the all-optical Kerr effect in solids

Bastian Borchers, Carsten Brée, Simon Birkholz, Ayhan Demircan, and Günter Steinmeyer  »View Author Affiliations

Optics Letters, Vol. 37, Issue 9, pp. 1541-1543 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (257 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss the influence of the higher-order Kerr effect (HOKE) in wide bandgap solids at extreme intensities below the onset of optically induced damage. Using different theoretical models, we employ multiphoton absorption rates to compute the nonlinear refractive index by a Kramers–Kronig transform. Within this theoretical framework we provide an estimate for the appearance of significant deviations from the standard optical Kerr effect predicting a linear index change with intensity. We discuss the role of the observed saturation behavior in practically relevant situations, including Kerr lens mode-locking and supercontinuum generation in photonic crystal fibers. Furthermore, we present experimental data from a multiwave mixing experiment in BaF2, which can be explained by the appearance of the HOKE.

© 2012 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4180) Nonlinear optics : Multiphoton processes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

ToC Category:
Nonlinear Optics

Original Manuscript: January 24, 2012
Revised Manuscript: February 29, 2012
Manuscript Accepted: March 1, 2012
Published: May 1, 2012

Bastian Borchers, Carsten Brée, Simon Birkholz, Ayhan Demircan, and Günter Steinmeyer, "Saturation of the all-optical Kerr effect in solids," Opt. Lett. 37, 1541-1543 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, J. Opt. Soc. Am. B 4, 595 (1987). [CrossRef]
  2. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009). [CrossRef]
  3. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009). [CrossRef]
  4. M. Kolesik, D. Mirell, J.-C. Diels, and J. V. Moloney, Opt. Lett. 35, 3685 (2010). [CrossRef]
  5. C. Brée, A. Demircan, and G. Steinmeyer, Phys. Rev. Lett. 106, 183902 (2011). [CrossRef]
  6. K. D. Moll, D. Homoelle, A. L. Gaeta, and R. W. Boyd, Phys. Rev. Lett. 88, 153901 (2002). [CrossRef]
  7. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005). [CrossRef]
  8. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
  9. H. S. Brandi and C. B. de Araújo, J. Phys. C 16, 5929 (1983). [CrossRef]
  10. B. S. Wherrett, J. Opt. Soc. Am. B 1, 67 (1984). [CrossRef]
  11. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991). [CrossRef]
  12. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996). [CrossRef]
  13. L. Bergé, S. Skupin, and G. Steinmeyer, Phys. Rev. Lett. 101, 213901 (2008). [CrossRef]
  14. J. K. Wahlstrand and H. M. Milchberg, Opt. Lett. 36, 3822 (2011). [CrossRef]
  15. P. Béjot, E. Hertz, J. Kasparian, B. Lavorel, J.-P. Wolf, and O. Faucher, Phys. Rev. Lett. 106, 243902 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited