OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 10 — May. 15, 2013
  • pp: 1718–1720

Highly efficient counter-propagation-beamsnarrow-band ultraviolet frequency conversion in a quantum gas

Chengjie Zhu, L. Deng, and E. W. Hagley  »View Author Affiliations


Optics Letters, Vol. 38, Issue 10, pp. 1718-1720 (2013)
http://dx.doi.org/10.1364/OL.38.001718


View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that highly efficient ultraviolet frequency up conversion can be established in a single-component quantum gas in the counter-propagating weak pump beam geometry where no frequency up conversion can occur in a normal gas. We also show that all light-wave mixing and scattering processes in quantum gases originating from elementary excitations characterized by efficient collective atomic recoil motion are stimulated Raman/hyper-Raman in nature.

© 2013 Optical Society of America

OCIS Codes
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated
(020.1475) Atomic and molecular physics : Bose-Einstein condensates
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 25, 2013
Revised Manuscript: April 17, 2013
Manuscript Accepted: April 18, 2013
Published: May 14, 2013

Citation
Chengjie Zhu, L. Deng, and E. W. Hagley, "Highly efficient counter-propagation-beamsnarrow-band ultraviolet frequency conversion in a quantum gas," Opt. Lett. 38, 1718-1720 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-10-1718


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Elliott, Ultraviolet Laser Technology and Applications (Academic, 1995).
  2. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  3. R. B. Miles and S. E. Harris, IEEE J Quantum Electron. QE-9, 470 (1973). [CrossRef]
  4. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995). [CrossRef]
  5. K. B. Davis, M. O. Mewes, M. R. Andrew, N. J. Vandruten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995). [CrossRef]
  6. C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. 78, 985 (1997). [CrossRef]
  7. R. K. Wunderlich, W. R. Garrett, R. C. Hart, M. A. Moore, and M. G. Payne, Phys. Rev. A 41, 6345 (1990). [CrossRef]
  8. W. R. Garrett, M. A. Moore, R. C. Hart, M. G. Payne, and R. K. Wunderlich, Phys. Rev. A 45, 6687 (1992). [CrossRef]
  9. L. Deng, W. R. Garrett, M. G. Payne, and M. A. Moore, Chem. Phys. Lett. 270, 299 (1997). [CrossRef]
  10. L. Deng, M. G. Payne, and W. R. Garrett, Phys. Rep. 429, 123 (2006). [CrossRef]
  11. H. Uys and P. Meystre, Phys. Rev. A 75, 03385 (2007). [CrossRef]
  12. H. Uys and P. Meystre, Phys. Rev. A 77, 063614 (2008). [CrossRef]
  13. J. Kołodyński, J. Chwedeńczuk, and W. Wasilewski, Phys. Rev. A 86, 013818 (2012). [CrossRef]
  14. N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947).
  15. F. Zambelli, L. Pitaevskii, D. M. Stamper-Kurn, and S. Stringari, Phys. Rev. A 61, 063608 (2000). [CrossRef]
  16. R. P. Feynman, Phys. Rev. 94, 262 (1954). [CrossRef]
  17. This approximation is valid for long pulse excitation so that γτ≫1 (here τ is the pump laser pulse length).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited