OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 11 — Jun. 1, 2013
  • pp: 1778–1780

Calculation of bending losses for highly confined modes of optical waveguides with transformation optics

Zhanghua Han, Pu Zhang, and Sergey I. Bozhevolnyi  »View Author Affiliations


Optics Letters, Vol. 38, Issue 11, pp. 1778-1780 (2013)
http://dx.doi.org/10.1364/OL.38.001778


View Full Text Article

Enhanced HTML    Acrobat PDF (230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We revisited the fundamental problem of bending loss calculation in optical waveguide theory using transformation optics (TOs). Due to the fact that TOs is based on the form invariance property of Maxwell equations, this new approach provides more accurate calculation of waveguide bending loss compared to the conventional refractive index conformal mapping method, especially for small bending radii typical for plasmonic waveguides or photonic waveguides with high-index contrast. We believe our results provide a simple yet reliable way of bending loss calculation for highly confined optical (including plasmonic) waveguides.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(160.3918) Materials : Metamaterials

ToC Category:
Optical Devices

History
Original Manuscript: February 25, 2013
Revised Manuscript: April 10, 2013
Manuscript Accepted: April 19, 2013
Published: May 20, 2013

Citation
Zhanghua Han, Pu Zhang, and Sergey I. Bozhevolnyi, "Calculation of bending losses for highly confined modes of optical waveguides with transformation optics," Opt. Lett. 38, 1778-1780 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-11-1778


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Heiblum and J. Harris, IEEE J. Quantum Electron. QE-11, 75 (1975). [CrossRef]
  2. W. W. Lui, T. Hirono, K. Yokoyama, and W. Huang, J. Lightwave Technol. 16, 910 (1998). [CrossRef]
  3. J. Xiao and X. Sun, Opt. Express 20, 21583 (2012). [CrossRef]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006). [CrossRef]
  5. D. Schurig, J. J. Mock, B. J. J. Justice, S. A. Cummer, J. B. B. Pendry, A. F. F. Starr, and D. R. R. Smith, Science 314, 977 (2006). [CrossRef]
  6. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, Nat. Commun. 3, 1217 (2012). [CrossRef]
  7. J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, Appl. Phys. Lett. 100, 221903 (2012). [CrossRef]
  8. Z. Liang and J. Li, Opt. Express 19, 16821 (2011). [CrossRef]
  9. L. Prkna, M. Hubálek, and J. Ctyroký, IEEE Photon. Technol. Lett. 16, 2057 (2004). [CrossRef]
  10. T. Holmgaard and S. I. Bozhevolnyi, Phys. Rev. B 75, 1 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited