OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 11 — Jun. 1, 2013
  • pp: 1799–1801

Deep nonlinear ablation of silicon with a quasi-continuous wave fiber laser at 1070 nm

Karen X. Z. Yu, Logan G. Wright, Paul J. L. Webster, and James. M. Fraser  »View Author Affiliations

Optics Letters, Vol. 38, Issue 11, pp. 1799-1801 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We achieve high aspect-ratio laser ablation of silicon with a strong nonlinear dependence on pulse duration while using a power density 106 times less than the threshold for typical multiphoton-mediated ablation. This is especially counter-intuitive as silicon is nominally transparent to the modulated continuous wave Yb:fiber laser used in the experiments. We perform time-domain finite-element simulations of thermal dynamics to investigate thermo-optical coupling and link the observed machining to an intensity-thresholded runaway thermo-optically nonlinear process. This effect, cascaded absorption, is qualitatively different from ablation observed using nanosecond-duration pulses and is general enough to potentially facilitate high-quality, high aspect-ratio, and economical processing of many materials.

© 2013 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3510) Lasers and laser optics : Lasers, fiber
(160.6000) Materials : Semiconductor materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4870) Nonlinear optics : Photothermal effects
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 24, 2012
Revised Manuscript: March 4, 2013
Manuscript Accepted: March 13, 2013
Published: May 20, 2013

Karen X. Z. Yu, Logan G. Wright, Paul J. L. Webster, and James. M. Fraser, "Deep nonlinear ablation of silicon with a quasi-continuous wave fiber laser at 1070 nm," Opt. Lett. 38, 1799-1801 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. O’Neill and K. Li, IEEE J. Sel. Top. Quantum 15, 462 (2009). [CrossRef]
  2. D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).
  3. X. Liu, D. Du, and G. Mourou, IEEE J. Quantum Electron. 33, 1706 (1997). [CrossRef]
  4. B. Shiner, Nat. Photonics 2, 24 (2008). [CrossRef]
  5. D. Lowndes, G. Jellison, and R. Wood, Phys. Rev. B 26, 6747 (1982). [CrossRef]
  6. E. Palik, ed. Handbook of Optical Constants in Solids (Academic, 1988).
  7. S. Hendow and S. Shakir, Opt. Express 18, 10188 (2010). [CrossRef]
  8. K. Li and W. O’Neill, Int. J. Precis. Eng. Man. 13, 641 (2012). [CrossRef]
  9. Y. Zhou, B. Wu, S. Tao, A. Forsman, and Y. Gao, Appl. Surf. Sci. 257, 2886 (2011). [CrossRef]
  10. G. Jellison and D. Lowndes, Appl. Phys. Lett. 41, 594 (1982). [CrossRef]
  11. P. J. L. Webster, J. X. Z. Yu, B. Y. C. Leung, M. D. Anderson, V. X. D. Yang, and J. M. Fraser, Opt. Lett. 35, 646 (2010). [CrossRef]
  12. J. X. Z. Yu, P. J. L. Webster, B. Y. C. Leung, and J. M. Fraser, Proc. SPIE 7584, 75840W (2010). [CrossRef]
  13. W. Steen and J. Mazumder, Laser Material Processing (Springer-Verlag, 2010).
  14. J. X. Z. Yu, “Highly efficient thermal ablation of silicon and ablation in other materials,” MASc. Thesis (Queen’s University, 2011).
  15. C. Ong, H. Tan, and E. Sin, Mater. Sci. Eng. 79, 79 (1986). [CrossRef]
  16. A. Bell, RCA Rev. 40, 295 (1979).
  17. C. Glassbrenner and G. Slack, Phys. Rev. A 134, 1058 (1964). [CrossRef]
  18. S. Kimura and K. Terashima, J. Cryst. Growth 180, 323 (1997). [CrossRef]
  19. P. Desai, J. Phys. Chem. Ref. Data 15, 967 (1986). [CrossRef]
  20. H. Li, J. Phys. Chem. Ref. Data 9, 561 (1980). [CrossRef]
  21. G. Arfken and H. Weber, Mathematical Methods for Physicists (Academic, 2005).
  22. H. Carslaw and J. Jaeger, Conduction of Heat in Solids, 2nd. ed. (Oxford University, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited