OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 11 — Jun. 1, 2013
  • pp: 1963–1965

Direct measurement of the Wigner time delay for the scattering of light by a single atom

R. Bourgain, J. Pellegrino, S. Jennewein, Y. R. P. Sortais, and A. Browaeys  »View Author Affiliations

Optics Letters, Vol. 38, Issue 11, pp. 1963-1965 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (353 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have implemented the Gedanken experiment of an individual atom scattering a wave packet of near-resonant light, and measured the associated Wigner time delay as a function of the frequency of the light. In our apparatus, the atom behaves as a two-level system and we have found delays as large as 42 ns at resonance, limited by the lifetime of the excited state. This delay is an important parameter in the problem of collective near-resonant scattering by an ensemble of interacting particles, which is encountered in many areas of physics.

© 2013 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(290.4210) Scattering : Multiple scattering
(290.5820) Scattering : Scattering measurements
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:

Original Manuscript: April 15, 2013
Manuscript Accepted: April 17, 2013
Published: May 30, 2013

Virtual Issues
May 31, 2013 Spotlight on Optics

R. Bourgain, J. Pellegrino, S. Jennewein, Y. R. P. Sortais, and A. Browaeys, "Direct measurement of the Wigner time delay for the scattering of light by a single atom," Opt. Lett. 38, 1963-1965 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. P. Wigner, Phys. Rev. 98, 145 (1955). [CrossRef]
  2. F. T. Smith, Phys. Rev. 118, 349 (1960). [CrossRef]
  3. A. Lagendijk and B. A. van Tiggelen, Phys. Rep. 270, 143 (1996). [CrossRef]
  4. C. A. A. de Carvalho and H. M. Nussenzveig, Phys. Rep. 364, 83 (2002). [CrossRef]
  5. G. Labeyrie, E. Vaujour, C. A. Müller, D. Delande, C. Miniatura, D. Wilkowski, and R. Kaiser, Phys. Rev. Lett. 91, 223904 (2003). [CrossRef]
  6. C. A. Müller, C. Miniatura, D. Wilkowski, R. Kaiser, and D. Delande, Phys. Rev. A 72, 053405 (2005). [CrossRef]
  7. R. Pierrat and R. Carminati, Phys. Rev. A 81, 063802 (2010). [CrossRef]
  8. C. Maroni, I. Massa, and G. Vannini, Phys. Lett. B 60, 344 (1976). [CrossRef]
  9. D. Chauvat, O. Emile, F. Bretenaker, and A. Le Floch, Phys. Rev. Lett. 84, 71 (2000). [CrossRef]
  10. A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, Nature 449, 1029 (2007). [CrossRef]
  11. M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, Science 328, 1658 (2010). [CrossRef]
  12. K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L’Huillier, Phys. Rev. Lett. 106, 143002 (2011). [CrossRef]
  13. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  14. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).
  15. Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, Phys. Rev. A 75, 013406 (2007). [CrossRef]
  16. C. Tuchendler, A. M. Lance, A. Browaeys, Y. R. P. Sortais, and P. Grangier, Phys. Rev. A 78, 033425 (2008). [CrossRef]
  17. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Basic Process and Applications (Wiley, 1997).
  18. The exact origin of the chirp is still under investigation. It might come from a small variation of the residual light shift of the atomic transition frequency during the switching off of the dipole trap laser on this small time scale.
  19. We also note that the optical Bloch equations predict a temporal width of the scattered pulse that varies slightly with the detuning [see Fig. 2(b)].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited