OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 13 — Jul. 1, 2013
  • pp: 2168–2170

Convolution-variation separation method for efficient modeling of optical lithography

Shiyuan Liu, Xinjiang Zhou, Wen Lv, Shuang Xu, and Haiqing Wei  »View Author Affiliations

Optics Letters, Vol. 38, Issue 13, pp. 2168-2170 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a general method called convolution-variation separation (CVS) to enable efficient optical imaging calculations without sacrificing accuracy when simulating images for a wide range of process variations. The CVS method is derived from first principles using a series expansion, which consists of a set of predetermined basis functions weighted by a set of predetermined expansion coefficients. The basis functions are independent of the process variations and thus may be computed and stored in advance, while the expansion coefficients depend only on the process variations. Optical image simulations for defocus and aberration variations with applications in robust inverse lithography technology and lens aberration metrology have demonstrated the main concept of the CVS method.

© 2013 Optical Society of America

OCIS Codes
(110.4980) Imaging systems : Partial coherence in imaging
(110.5220) Imaging systems : Photolithography
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

Original Manuscript: March 18, 2013
Revised Manuscript: April 22, 2013
Manuscript Accepted: May 5, 2013
Published: June 18, 2013

Shiyuan Liu, Xinjiang Zhou, Wen Lv, Shuang Xu, and Haiqing Wei, "Convolution-variation separation method for efficient modeling of optical lithography," Opt. Lett. 38, 2168-2170 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Wong, Optical Imaging in Projection Microlithography (SPIE, 2005).
  2. H. H. Hopkins, Proc. R. Soc. A 217, 408 (1953).
  3. E. Kintner, Appl. Opt. 17, 2747 (1978). [CrossRef]
  4. K. Yamazoe, J. Opt. Soc. Am. A 25, 3111 (2008). [CrossRef]
  5. N. B. Cobb, “Fast optical and process proximity correction algorithms for integrated circuit manufacturing,” Ph.D. dissertation (University of California at Berkeley, 1998).
  6. Y. C. Pati and T. Kailath, J. Opt. Soc. Am. A 11, 2438 (1994). [CrossRef]
  7. B. E. A. Saleh, Opt. Acta 26, 777 (1979). [CrossRef]
  8. W. Miller, Symmetry and Separation of Variables (Cambridge University, 1984).
  9. A. Starikov and E. Wolf, J. Opt. Soc. Am. 72, 923 (1982). [CrossRef]
  10. B. J. Davis and R. W. Schoonover, Opt. Lett. 34, 923 (2009). [CrossRef]
  11. H. Wei, “Computational efficiency in photolithographic process simulation,” U.S. patent7,788,628 (August31, 2010).
  12. Y. Shen, N. Jia, N. Wong, and E. Y. Lam, Opt. Express 19, 5511 (2011). [CrossRef]
  13. P. Yu, D. Z. Pan, and C. A. Mack, Proc. SPIE 6156, 397 (2006).
  14. K. Yamazoe and A. R. Neureuther, Appl. Opt. 50, 3570 (2011). [CrossRef]
  15. A. Poonawala and P. Milanfar, IEEE Trans. Image Process. 16, 774 (2007). [CrossRef]
  16. T. Brunner, D. Corliss, S. Butt, T. Wiltshire, C. P. Ausschnitt, and M. Smith, J. Microlith. Microfab. Microsyst. 5, 043003 (2006). [CrossRef]
  17. S. Y. Liu, W. Liu, and T. T. Zhou, J. Micro/Nanolith. MEMS MOEMS 10, 023007 (2011). [CrossRef]
  18. S. Y. Liu, S. Xu, X. F. Wu, and W. Liu, Opt. Express 20, 14272 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited