OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 13 — Jul. 1, 2013
  • pp: 2227–2229

Time-resolved photoluminescence of Zn(OH)2 and its composites with graphite oxides

SM. Z. Islam, Taposh Gayen, Bidyut B. Das, Lingyan Shi, Mykola Seredych, Alaa Moussawi, Teresa J. Bandosz, and Robert Alfano  »View Author Affiliations

Optics Letters, Vol. 38, Issue 13, pp. 2227-2229 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (304 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Time-resolved photoluminescence is used to determine carrier recombination through radiative and nonradiative processes in zinc hydroxide Zn(OH)2 and its porous composites with graphite oxide (GO). The decay times, measured by a streak camera, are found to be larger for zinc hydroxide (1215±156ps) than its composites (976±81ps for ZnGO-2 and 742±59ps for ZnGO-5), but no significant changes in rise times (from 4.0 to 5.0 ps) are recorded. The dominant mechanism for the radiative process is attributed to free carrier recombination, while microporous networks present in these materials are found to be pathways for the nonradiative recombination process via multiphonon emission.

© 2013 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(300.0300) Spectroscopy : Spectroscopy
(300.6170) Spectroscopy : Spectra
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: March 27, 2013
Manuscript Accepted: May 23, 2013
Published: June 24, 2013

SM. Z. Islam, Taposh Gayen, Bidyut B. Das, Lingyan Shi, Mykola Seredych, Alaa Moussawi, Teresa J. Bandosz, and Robert Alfano, "Time-resolved photoluminescence of Zn(OH)2 and its composites with graphite oxides," Opt. Lett. 38, 2227-2229 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Mabayoje, M. Seredych, and T. J. Bandosz, Appl. Catal. B 132–133, 321 (2013). [CrossRef]
  2. T. J. Bandosz, J. Matos, M. Seredych, M. S. Z. Islam, and R. Alfano, Appl. Catal. A Gen. 445–446, 159 (2012). [CrossRef]
  3. M. Seredych, O. Mabayoje, M. Kolesnik, V. Krstic, and T. J. Bandosz, J. Mater. Chem. 22, 7970 (2012). [CrossRef]
  4. H. J. Zarrabi, W. B. Wang, and R. Alfano, Appl. Phys. Lett. 46, 513 (1985). [CrossRef]
  5. SM. Z. Islam, T. Gayen, A. Moussawi, L. Shi, M. Seredych, T. J. Bandosz, and R. R. Alfano, Opt. Lett. 38, 962 (2013). [CrossRef]
  6. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). [CrossRef]
  7. C. E. Swenberg, Biological Events Probed by Ultrafast Laser Spectroscopy, R. Alfano, ed. (Academic, 1982), Chap. 7.
  8. J. K. A. Bluman, J. Chem. Phys 80, 875 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited