OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 13 — Jul. 1, 2013
  • pp: 2253–2255

Disorder-mediated enhancement of fiber numerical aperture

Youngwoon Choi, Changhyeong Yoon, Moonseok Kim, Juhee Yang, and Wonshik Choi  »View Author Affiliations

Optics Letters, Vol. 38, Issue 13, pp. 2253-2255 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (363 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The numerical aperture (NA) of a multimode optical fiber sets the limit of the information transport capacity along the spatial degree of freedom. In this Letter, we report that the application of a highly disordered medium can overcome the capacity limit set by the fiber NA. Specifically, we coated the input surface of a multimode fiber with a disordered medium made of ZnO nanoparticles and transported a wide-field image through the fiber with a spatial resolution beyond the diffraction limit given by the fiber NA. This was made possible because multiple scatterings induced by the disordered medium physically increased the NA of the entire system. Our study will lead to enhancing the spatial resolution of fiber-based endoscopic imaging and also improving the information transport capacity in optical communications.

© 2013 Optical Society of America

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(110.0113) Imaging systems : Imaging through turbid media
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 25, 2013
Revised Manuscript: May 22, 2013
Manuscript Accepted: May 27, 2013
Published: June 24, 2013

Youngwoon Choi, Changhyeong Yoon, Moonseok Kim, Juhee Yang, and Wonshik Choi, "Disorder-mediated enhancement of fiber numerical aperture," Opt. Lett. 38, 2253-2255 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Stuart, Science 289, 281 (2000). [CrossRef]
  2. A. A. Friesem and U. Levy, Opt. Lett. 2, 133 (1978). [CrossRef]
  3. A. L. Aan de Kerk, Int. Ophthalmol. 3, 191 (1981). [CrossRef]
  4. B. F. a. S. Sternklar, Appl. Phys. Lett. 46, 113 (1985). [CrossRef]
  5. J. Y. Son, V. I. Bobrinev, H. W. Jeon, Y. H. Cho, and Y. S. Eom, Appl. Opt. 35, 273 (1996). [CrossRef]
  6. S. Bianchi and R. Di Leonardo, Lab Chip 12, 635 (2012). [CrossRef]
  7. T. Cizmar and K. Dholakia, Nat. Commun. 3, 1027 (2012). [CrossRef]
  8. R. N. Mahalati, R. Y. Gu, and J. M. Kahn, Opt. Express 21, 1656 (2013). [CrossRef]
  9. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Biomed. Opt. Express 4, 260 (2013). [CrossRef]
  10. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901 (2012). [CrossRef]
  11. C. Yoon, Y. Choi, M. Kim, J. Moon, and W. Choi, Opt. Lett. 37, 4558 (2012). [CrossRef]
  12. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011). [CrossRef]
  13. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, Opt. Lett. 30, 1165 (2005). [CrossRef]
  14. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, Nat. Photonics 6, 581 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited