OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 13 — Jul. 1, 2013
  • pp: 2286–2288

Spatially resolved measurement of singlet delta oxygen by radar resonance-enhanced multiphoton ionization

Yue Wu, Zhili Zhang, and Timothy M. Ombrello  »View Author Affiliations

Optics Letters, Vol. 38, Issue 13, pp. 2286-2288 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (270 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization (REMPI) was demonstrated to directly and nonintrusively measure singlet delta oxygen, O2(a1Δg), with high spatial resolution. Two different approaches, photodissociation of ozone and microwave discharge plasma in an argon and oxygen flow, were utilized for O2(a1Δg) generation. The d1Πga1Δg (3-0) and d1Πga1Δg (1-0) bands of O2(a1Δg) were detected by Radar REMPI for two different flow conditions. Quantitative absorption measurements using sensitive off-axis integrated cavity output spectroscopy (ICOS) was used simultaneously to evaluate the accuracy and sensitivity of the Radar REMPI technique. The detection limit of Radar REMPI was found to be comparable to the ICOS technique with a detection threshold of approximately 1014molecules/cm3 but with a spatial resolution that was 8 orders of magnitude smaller than the ICOS technique.

© 2013 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6350) Spectroscopy : Spectroscopy, ionization

ToC Category:

Original Manuscript: April 16, 2013
Revised Manuscript: May 30, 2013
Manuscript Accepted: May 31, 2013
Published: June 25, 2013

Yue Wu, Zhili Zhang, and Timothy M. Ombrello, "Spatially resolved measurement of singlet delta oxygen by radar resonance-enhanced multiphoton ionization," Opt. Lett. 38, 2286-2288 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Schweitzer and R. Schmidt, Chem. Rev. 103, 1685 (2003). [CrossRef]
  2. S. J. Arnold, N. Finlayso, and E. A. Ogryzlo, J. Chem. Phys. 44, 2529 (1966). [CrossRef]
  3. J. R. Hurst, J. D. Mcdonald, and G. B. Schuster, J. Am. Chem. Soc. 104, 2065 (1982). [CrossRef]
  4. V. T. Gylys and L. F. Rubin, Appl. Opt. 37, 1026 (1998). [CrossRef]
  5. V. S. Pazyuk, P. P. k. Yu, N. A. Raspopov, and M. P. Frolov, Quantum Electron. 31, 363 (2001). [CrossRef]
  6. S. Williams, M. Gupta, T. Owano, D. Baer, A. O’Keefe, D. R. Yarkony, and S. Matsika, Opt. Lett. 29, 1066 (2004). [CrossRef]
  7. J. S. Morrill, M. L. Ginter, E. S. Hwang, T. G. Slanger, R. A. Copeland, B. R. Lewis, and S. T. Gibson, J. Mol. Spectrosc. 219, 200 (2003). [CrossRef]
  8. K. Kohsehoinghaus, Prog. Energy Combust. Sci. 20, 203 (1994). [CrossRef]
  9. Z. Zhang, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 98, 265005 (2007). [CrossRef]
  10. R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, AIAA J. 45, 513 (2007). [CrossRef]
  11. Y. Wu, A. Bottom, Z. Zhang, T. M. Ombrello, and V. R. Katta, Opt. Express 19, 23997 (2011). [CrossRef]
  12. Y. Wu, Z. Zhang, and S. F. Adams, Chem. Phys. Lett. 513, 191 (2011). [CrossRef]
  13. Y. Wu, J. Sawyer, Z. Zhang, and S. F. Adams, Appl. Opt. 51, 6864 (2012). [CrossRef]
  14. T. Ombrello, S. H. Won, Y. G. Ju, and S. Williams, Combust. Flame 157, 1916 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited