OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 13 — Jul. 1, 2013
  • pp: 2333–2335

High net modal gain (>100 cm−1) in 19-stacked InGaAs quantum dot laser diodes at 1000 nm wavelength band

Fumihiko Tanoue, Hiroharu Sugawara, Kouichi Akahane, and Naokatsu Yamamoto  »View Author Affiliations


Optics Letters, Vol. 38, Issue 13, pp. 2333-2335 (2013)
http://dx.doi.org/10.1364/OL.38.002333


View Full Text Article

Enhanced HTML    Acrobat PDF (396 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An InGaAs quantum dot (QD) laser diode with 19-stacked QDs separated by 20 nm-thick GaAs spacers was fabricated using an ultrahigh-rate molecular beam epitaxial growth technique, and the laser characteristics were evaluated. A 19-stacked simple broad area QD laser diode was lased at the 1000 nm waveband. A net modal gain of 103cm1 was obtained at 2.25kA/cm2, and the saturated modal gain was 145.6cm1; these are the highest values obtained to our knowledge. These results indicate that using this technique to highly stack QDs is effective for improving the net modal gain of QD lasers.

© 2013 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 22, 2013
Manuscript Accepted: May 28, 2013
Published: June 27, 2013

Citation
Fumihiko Tanoue, Hiroharu Sugawara, Kouichi Akahane, and Naokatsu Yamamoto, "High net modal gain (>100 cm−1) in 19-stacked InGaAs quantum dot laser diodes at 1000 nm wavelength band," Opt. Lett. 38, 2333-2335 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-13-2333


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. D. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, and K. J. Malloy, IEEE Photon. Technol. Lett. 12, 227 (2000). [CrossRef]
  2. A. E. Zhukov, A. R. Kovsh, D. A. Livshits, V. M. Ustinov, and Zh. I. Alferov, Semicond. Sci. Technol. 18, 774 (2003). [CrossRef]
  3. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, Appl. Phys. Lett. 82, 1818 (2003). [CrossRef]
  4. F. Y. Chang, C. C. Wu, and H. H. Lin, Appl. Phys. Lett. 82, 4477 (2003). [CrossRef]
  5. A. Salhi, G. Rainx, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. D. Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. D. Vittorio, Nanotechnology 19, 275401 (2008). [CrossRef]
  6. K. Shiramine, Y. Horisaki, D. Suzuki, S. Itoh, Y. Ebiko, S. Muto, Y. Nakata, and N. Yokoyama, Jpn. J. Appl. Phys. 37, 5493 (1998). [CrossRef]
  7. K. M. Kim, Y. J. Park, C. H. Roh, Y. M. Park, E. K. Kim, C. K. Hyon, J. H. Park, and T. W. Kim, Jpn. J. Appl. Phys. 42, 54 (2003). [CrossRef]
  8. K. Akahane, N. Ohtani, Y. Okada, and M. Kawabe, J. Cryst. Growth 245, 31 (2002). [CrossRef]
  9. K. Akahane, N. Yamamoto, and T. Kawanishi, Phys. Status Solidi A 208, 425 (2011). [CrossRef]
  10. K. Akahane and N. Yamamoto, J. Cryst. Growth 323, 154 (2011). [CrossRef]
  11. F. Tanoue, H. Sugawara, K. Akahane, and N. Yamamoto, Phys. Status Solidi C 9, 226 (2012). [CrossRef]
  12. K. Akahane and N. Yamamoto, Physica E 42, 2735 (2010). [CrossRef]
  13. H. Sugawara, T. Nakamura, F. Tanoue, Y. Saeki, K. Akahane, N. Yamamoto, and T. Kawanishi, presented at the 37th International Symposium on Compound Semiconductors (ISCS2010) FrP22, Takamatsu, Japan, May31–June 4, 2010.
  14. F. Tanoue, H. Sugawara, K. Akahane, and N. Yamamoto, presented at the 2011 Solid State Devices and Materials (SSDM2011) P-8-2, Nagoya, Japan, September27–30, 2011.
  15. N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, Jpn. J. Appl. Phys. 49, 04DG03 (2010). [CrossRef]
  16. N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, Jpn. J. Appl. Phys. 51, 02BG08 (2012). [CrossRef]
  17. A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, Appl. Phys. Lett. 84, 1058 (2004). [CrossRef]
  18. M. Ishida, K. Watanabe, N. Kumagai, Y. Nakata, N. Hatori, H. Sudo, T. Yamamoto, M. Sugawara, and Y. Arakawa, 19th International Conference on Indium Phosphide and Related Materials (IPRM2007), Matsue, Japan, May 14–18, 2007, FrB1-3.
  19. P. M. Smowton, E. Herrmann, Y. Ning, H. D. Summers, P. Blood, and M. Hopkinson, Appl. Phys. Lett. 78, 2629 (2001). [CrossRef]
  20. Y. Tanaka, M. Ishida, Y. Maeda, T. Akiyama, T. Yamamoto, H. Song, M. Yamaguchi, Y. Nakata, K. Nishi, M. Sugawara, and Y. Arakawa, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWJ1.
  21. I. I. Novikov, N. Y. Gordeev, M. V. Maksimov, A. E. Zhukov, Y. M. Shernyakov, V. M. Ustinov, N. V. Kryzhanovskaya, A. S. Payusov, I. L. Krestnikov, D. A. Lifshits, S. S. Mikhrin, and A. R. Kovsh, Tech. Phys. Lett. 34, 1008 (2008). [CrossRef]
  22. M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, and A. Kovsh, Semicond. Sci. Technol. 23, 105004 (2008). [CrossRef]
  23. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, IEEE Photon. Technol. Lett. 11, 931 (1999). [CrossRef]
  24. A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, Semicond. Sci. Technol. 14, 118 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited