OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 13 — Jul. 1, 2013
  • pp: 2336–2338

Adaptive liquid iris based on electrowetting

Lei Li, Chao Liu, Hongwen Ren, and Qiong-Hua Wang  »View Author Affiliations

Optics Letters, Vol. 38, Issue 13, pp. 2336-2338 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (295 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a tunable iris using two immiscible liquids. One liquid is opaque and conductive, while the other liquid is clear and insulating. The opaque liquid forms an iris-like opening in its central area on one glass substrate surface. The clear liquid is used to fill the outside space of the opaque liquid. In the voltage-off state, the opening presents the smallest aperture. When a voltage is applied to the liquids, the diameter of the iris is enlarged due to the electrowetting effect. Our results show that the aperture of the iris can be tuned from 2.3 to 6.1mm as the applied voltage is changed from 0 to 65V. The response time and the transmittance in the opening area were measured to be 200ms and 85%, respectively. Our adaptive iris has potential applications in beam controls, light shutters, and lab-on-a-chip devices.

© 2013 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(130.4815) Integrated optics : Optical switching devices
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Devices

Original Manuscript: May 8, 2013
Revised Manuscript: May 27, 2013
Manuscript Accepted: May 29, 2013
Published: June 27, 2013

Lei Li, Chao Liu, Hongwen Ren, and Qiong-Hua Wang, "Adaptive liquid iris based on electrowetting," Opt. Lett. 38, 2336-2338 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. C. Harrison and J. Schnitzer, “Diaphragm for photographic cameras,” U.S. patent000,021,470 (September7, 1858).
  2. R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004). [CrossRef]
  3. S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004). [CrossRef]
  4. B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000). [CrossRef]
  5. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, Opt. Express 14, 6557 (2006). [CrossRef]
  6. J. K. Park, S. J. Lee, and K. H. Kang, Biomicrofluidics 4, 024102 (2010). [CrossRef]
  7. Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, Opt. Express 18, 10104 (2010). [CrossRef]
  8. H. Yu, G. Zhou, C. F. Siong, and L. Feiwen, Opt. Lett. 33, 548 (2008). [CrossRef]
  9. H. Ren and S. T. Wu, Opt. Lett. 35, 3826 (2010). [CrossRef]
  10. C. G. Tsai and J. A. Yeh, Opt. Lett. 35, 2484 (2010). [CrossRef]
  11. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, Opt. Express 19, 15525 (2011). [CrossRef]
  12. L. Li, C. Liu, and Q. H. Wang, Opt. Lett. 37, 3306 (2012). [CrossRef]
  13. L. Li, C. Liu, and Q. H. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MOV (3443 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited